Abstract:
A standby battery box for an electric cylinder is electrically connected to a control box for driving the electric cylinder and includes a charge-discharge device and a rechargeable battery. The charge-discharge device includes a protection unit, a power conversion unit, a voltage detection unit, a control unit, a discharge unit, a display unit, and a switch unit. The rechargeable battery is electrically connected to the charge-discharge device. When a startup switch of the switch unit is pressed, the charge-discharge device delivers the electricity of the rechargeable battery into the control box. When a shutoff switch of the switch unit is pressed, the charge-discharge device does not supply power, thereby protecting the standby battery box from being exhausted.
Abstract:
A power supply device for a linear actuator apparatus, which includes a control module and a battery module. The power supply device further provides a battery module including a box, a primary power supply unit and a standby power supply unit. The box has a first chamber, a second chamber and a separating plate formed between the first chamber and the second chamber. The primary power supply unit is provided in the first chamber. The standby power supply unit is provided in the second chamber.
Abstract:
The present invention provides a motor having a braking function and used in a linear actuator. The motor includes a main body, a rotation shaft, a braking means and a stopping means. The rotation shaft penetrates the center of the main body. The braking means includes a braking ring and a helical ring. The braking ring includes a plurality of curved plates. The helical ring surrounds outer edges of the curved plates. Each curved plate is put on the outer periphery of the rotation shaft. The stopping means is disposed between the main body and the braking means for restricting the rotation of any of the curved plates. By this arrangement, a better braking and decelerating function can be achieved.
Abstract:
A motor with a braking mechanism for an actuator includes a main body, a rotating shaft and a braking mechanism. The rotating shaft is disposed through the center of the main body. The braking mechanism includes a friction element and a torsion spring, the friction element is arranged on the external periphery of the rotating shaft, and the torsion spring is elastically clamped at an outer edge of the friction element and an end of the torsion spring is fixed to main body. When the rotating shaft rotates in one direction, the torsion spring abuts the friction element to brake and decelerate the rotating shaft. With small wear and tear of the torsion spring, the service life can be extended. With a large contact area between the friction element and the rotating shaft, a good braking effect can be achieved.
Abstract:
A connecting assembly for an electric cylinder and a control box includes an electric cylinder, an electric control box and a sheathing ring. The electric cylinder includes an actuator and a contractible pipe module perpendicularly connected to an end of the actuator. The electric control box is disposed on an internal side at a right-angled position with respect to the actuator and the contractible pipe module and slidably connected to a side of the actuator. The sheathing ring is sheathed onto a contractible pipe module and slidably connected to a side of the electric control box. The connecting assembly of the invention not only achieves a screwless application, but also provides a quick, simple, convenient and stable assembling process.
Abstract:
A high-load linear actuator includes a driving mechanism, a worm shaft, a worm wheel assembly, a lead screw, a telescopic pipe and an outer pipe. The driving mechanism includes a base and a motor. The base has a supporting portion and an accommodating portion. The motor is fixed to the supporting portion. The worm shaft extends from the motor into the supporting portion. The worm wheel assembly comprises a worm wheel and two bearings for supporting the worm wheel in the accommodating portion. The worm wheel is drivingly engaged with the worm shaft. The lead screw is disposed through the worm wheel and driven by the motor for rotation. The telescopic pipe slips on the lead screw to be threadedly connected therewith. The outer pipe slips on the telescopic pipe. The rotation of the lead screw drives the telescopic pipe to linearly extend or retract relative to the outer pipe. By this structure, the present invention can be used in a medical apparatus capable of supporting a heavy load stably.
Abstract:
A gear motor having a safety mechanism includes a motor body, a speed reduction mechanism, a transmission mechanism, and a touch switch. The speed reduction mechanism includes a worm and a worm wheel drivingly engaged with the worm. The transmission mechanism includes a base fixed to the speed reduction mechanism, a lead screw rod pivotally connected to the base and rotatably driven by the worm wheel, and a nut threadedly connected to the lead screw rod. The touch switch is electrically connected to the motor body and provided aside the lead screw rod, thereby stopping the motor body when the nut contacts the touch switch. Thus, the gear motor not only controls the operation of the driven mechanism, but also allows various driven mechanisms to be mounted thereon. The assembled volume of the gear motor and the driven mechanism is reduced.
Abstract:
A safety mechanism for an electric linear actuator is disclosed. The linear actuator has a guide screw and a telescopic tube. The safety mechanism includes a nut, a nut sheath, a sleeve, and a torsion spring. The nut connects the guide screw. The nut sheath is fixed on one side of the nut to form an integer and is provided with a plurality of bumps. One end of the sleeve is put around the nut sheath and the other end thereof is connected to the telescopic tube. The sleeve is provided with a plurality of rabbets corresponding to the bumps. The torsion spring is disposed around the nut sheath and the sleeve. When the guide screw is rotated, the nut sheath is engaged with the sleeve by embedding the bumps into the rabbets. When the sleeve stops, the bumps and the rabbets depart from engagement to make the nut sheath and the nut freely rotate against the sleeve.
Abstract:
A safety release mechanism for a linear actuator having a lead screw and a telescopic tube includes a nut, a protection shroud, a sleeve connected to the telescopic tube, a clutching element and a spiral spring. The nut is threadedly and drivingly connected to the lead screw. The protection shroud is fixedly and drivingly connected to one side of the nut. One end of the sleeve is sheathed on the protection shroud while the other end thereof is fixedly connected to the telescopic tube. The outer periphery of the sleeve is formed with notches. The clutching element is sheathed on the sleeve and formed with protrusions configured to be selectively inserted into or removed from the notches. The spiral spring is sheathed on the protection shroud and the clutching element. With this arrangement, cleavage or damage of components can be prevented to thereby increase the safety of operation.