Abstract:
Optical coupling assemblies for silicon-based optical sources are disclosed. In one embodiment, an optical coupling assembly includes an optical coupling carrier frame and a jumper cable assembly. The optical coupling carrier frame includes a frame portion defining an integrated circuit opening operable to receive an integrated circuit assembly, and a connector portion extending from the frame portion. The connector portion includes a channel operable to receive an optical connector of an optical cable assembly. The jumper cable assembly is disposed within the connector portion. The jumper cable assembly includes a plurality of jumper optical fibers, a jumper ferrule coupled to a first end of the plurality of jumper optical fibers, and an optical turn assembly coupled to a second end of the plurality of jumper optical fibers. The optical turn assembly is operable to optically turn optical signals propagating within the optical turn assembly.
Abstract:
Optical coupling assemblies for silicon-based optical sources are disclosed. In one embodiment, an optical coupling assembly includes an optical coupling carrier frame and a jumper cable assembly. The optical coupling carrier frame includes a frame portion defining an integrated circuit opening operable to receive an integrated circuit assembly, and a connector portion extending from the frame portion. The connector portion includes a channel operable to receive an optical connector of an optical cable assembly. The jumper cable assembly is disposed within the connector portion. The jumper cable assembly includes a plurality of jumper optical fibers, a jumper ferrule coupled to a first end of the plurality of jumper optical fibers, and an optical turn assembly coupled to a second end of the plurality of jumper optical fibers. The optical turn assembly is operable to optically turn optical signals propagating within the optical turn assembly.
Abstract:
A controlled-contact method of measuring an insertion loss of a compressible DUT having a first ferrule with a first optical fiber and a first end face is disclosed. The method utilizes a compressible reference connector having a second ferrule with a second optical fiber and a second end face. The method includes: axially aligning the first and second ferrules to define a gap with an axial gap distance of greater than 150 μm; moving the reference connector at a connector velocity in the range from 1 mm/s to 5 mm/s; when the gap distance is less than 150 μm, reducing the connector velocity to between 10 μm/s and 500 μm/s until contact while continuing to measure the coupled optical power; after contact, increasing the connector velocity as the reference and DUT connector axially compress. The insertion loss is determined from ongoing measurements of the coupled optical power.
Abstract translation:公开了一种用第一光纤和第一端面测量具有第一套圈的可压缩DUT的插入损耗的受控接触方法。 该方法利用具有带有第二光纤和第二端面的第二套圈的可压缩参考连接器。 该方法包括:轴向对准第一和第二套圈以限定具有大于150μm的轴向间隙距离的间隙; 以1 mm / s至5 mm / s范围内的连接器速度移动参考连接器; 当间隙距离小于150μm时,将连接器速度降低到10μm/ s至500μm/ s之间,直到接触,同时继续测量耦合的光功率; 接触后,增加作为参考和DUT连接器轴向压缩的连接器速度。 插入损耗由耦合光功率的持续测量来确定。
Abstract:
Methods of reshaping ferrules used in optical fiber cables assemblies are disclosed. The reshaping methods reduce a core-to-ferrule concentricity error (E), which improves coupling efficiency and optical transmission. The methods include measuring a true center of the ferrule, wherein the true center is based on an outer surface of the ferrule; and reshaping at least a portion of the ferrule to change the true center of the ferrule, wherein the reshaping includes enlarging a portion of the ferrule. A variety of reshaping techniques are also disclosed.
Abstract:
The optical interconnection apparatus includes a laminated structure having an inner glass sheet, an adhesive layer, and an outer glass sheet. The laminated structure has a first bend section with bend angle and front and back opposite ends. An optical fiber is operably supported by the laminated structure so that it has a second bend section that follows the first bend section. The front end of the optical fiber resides proximate to the front end of the laminated structure and the back end of the optical fiber resides proximate to the back end of the laminated structure. The first bend section is formed by bending the laminated structure and then curing the adhesive. A protective coating can be deposited over the optical fiber and a portion of the laminated structure.
Abstract:
The optical-electrical printed circuit board disclosed herein includes a waveguide link assembly and a printed circuit board assembly. The printed circuit board assembly has first and second PCB layers between which optical waveguides of the waveguide link assembly are disposed. The end faces the optical waveguides are accessible through an access aperture in the printed circuit board assembly. An optical interconnector can be used to optically connect the optical waveguides to waveguides of an optical-electrical integrated circuit operably disposed on the printed circuit board assembly to form a photonic device. A waveguide bending structure can be used to bend the optical waveguides to facilitate optical coupling to the optical interconnector or directly to the waveguides of the optical-electrical integrated circuit. Methods of forming an optical-electrical printed circuit board, a photonic assembly and a photonic device are also disclosed.
Abstract:
A non-contact method of measuring an insertion loss of a DUT connector is disclosed. The DUT connector has a first ferrule with a first optical fiber and a first end face. The method utilizes a reference connector having a second ferrule with a second optical fiber and a second end face. The method includes: axially aligning the first and second ferrules so that the first and second end faces are confronting and spaced apart to define a gap with an axial gap distance d; measuring values of the insertion loss between the first and second optical fibers for different gap distances d>0; and estimating a value for the insertion loss for a gap distance of d=0 based on the measured values of the insertion loss when d>0.
Abstract:
Optical interconnection assemblies, glass interconnection substrates, and methods for making optical connections are disclosed. In one embodiment, an optical interconnection assembly includes a base substrate, a substrate optical waveguide coupled to the base substrate, the substrate optical waveguide having an end surface, an optical chip comprising an optical coupling surface, and a glass interconnection substrate. The glass interconnection substrate includes a first end optically coupled to the end surface of the substrate optical waveguide, a second end optically coupled to the optical coupling surface of the optical chip, and a curved portion disposed between the first end and the second end. The glass interconnection substrate further includes an optical waveguide at least partially positioned within the curved portion.
Abstract:
Optical interface devices and methods employing optical fibers and support member having a bend section are disclosed, wherein the optical interface device is used for optically connecting at least one photonic device to at least one optical device via at least one optical fiber. An array of optical fibers is arranged immediately adjacent a portion of the outer curved surface at the bend section. A fiber alignment member having a fiber alignment feature engages the array of optical fibers at a back-end flat portion of the support member so that end faces of the optical fibers are substantially co-planar with a bottom surface of the fiber alignment member and a back end of the support member. A securing layer disposed over the optical fiber array serves to secure the optical fiber array to the outer.
Abstract:
A controlled-contact method of measuring an insertion loss of a compressible DUT having a first ferrule with a first optical fiber and a first end face is disclosed. The method utilizes a compressible reference connector having a second ferrule with a second optical fiber and a second end face. The method includes: axially aligning the first and second ferrules to define a gap with an axial gap distance of greater than 150 μm; moving the reference connector at a connector velocity in the range from 1 mm/s to 5 mm/s; when the gap distance is less than 150 μm, reducing the connector velocity to between 10 μm/s and 500 μm/s until contact while continuing to measure the coupled optical power; after contact, increasing the connector velocity as the reference and DUT connector axially compress. The insertion loss is determined from ongoing measurements of the coupled optical power.