METHODS OF POST-PROCESSING PHOTOFABRICATED ARTICLES CREATED VIA ADDITIVE FABRICATION

    公开(公告)号:US20210323233A1

    公开(公告)日:2021-10-21

    申请号:US17052213

    申请日:2019-05-03

    摘要: Methods for post-processing photofabricated articles created via additive fabrication processes are described and claimed herein. Such methods include providing a photofabricated article, preferably an article that has been at least partially cured via cationic polymerization mechanisms, optionally, post-processing the photofabricated article, and base-washing the photofabricated article in an alkaline solution or dispersion to create a neutralized photofabricated article. In another embodiment, the methods include treating a photofabricated article having a residual acid or base species with a treatment composition in order to create a neutralized photofabricated article. Also described and claimed are the neutralized photofabricated articles created via the methods herein elsewhere described. Such articles are preferably biocompatible, especially as determined by their lack of cytotoxicity potential.

    OSTEOCONDUCTIVE FIBERS, MEDICAL IMPLANT COMPRISING SUCH OSTEOCONDUCTIVE FIBERS, AND METHODS OF MAKING

    公开(公告)号:US20210299332A1

    公开(公告)日:2021-09-30

    申请号:US16976123

    申请日:2019-03-06

    摘要: The disclosure relates to high-strength polyolefin composite fibers, which fibers have a fiber body comprising a composition consisting of polyolefin; 1-30 mass % of bioceramic particles having particle size D50 of 0.01-10 μm; at most 0.05 mass % of residual spin solvent; optionally 0-3 mass % of other additives; and wherein the sum of a)-d) is 100 mass %; and which fibers have bioceramic particles exposed at their surface, and show bioactivity. The composite fibers based on a composition of polyolefin with bioceramic particles mixed therein show particles being exposed at the fiber surface by techniques like AFM and XPS, and although apparently only a relatively small amount of bioceramic particles is exposed at the fiber surface, this appears sufficient for effective interaction with their environment and stimulating a positive biological response as demonstrated by in vitro cell studies.
    The present disclosure also concerns a method of making the high-strength composite fibers via a gel spinning process, fibrous articles comprising said bioactive composite fibers. Further embodiments concern use of these fibrous articles as a component of a medical implant or as a medical implant, especially as permanent high-strength orthopedic implants for repairing bone fractures or torn ligaments or tendons. Other embodiments include medical devices or implants comprising said fibrous articles.