Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
A novel and useful configurable radio frequency (RF) power amplifier (PA) and related front end module (FEM) circuit that enables manipulation of the operating point of the power amplifier resulting in configurability, multimode and multiband operating capability. The configurable PA also provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configurable power amplifier is made up of one or more configurable sub-amplifiers having each constructed to have several orders of freedom (i.e. biasing points). Each sub-amplifier and its combiner path include active and passive elements. Manipulating one or more biasing points of each sub-amplifier, and therefore of the aggregate power amplifier as well, achieves multimode and multiband operation. Biasing points include, for example, the gain and saturation point, frequency response, linearity level and EVM. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provides efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.
Abstract:
An integrated circuit that includes a die with an active radio frequency (RF) unit embedded thereon; a first port for receiving an output signal from the active RF unit; a harmonic filter that comprises a first harmonic filter inductor; and a first RF inductive load that is electrically coupled to the first port and is magnetically coupled to the first harmonic filter inductor.
Abstract:
A novel and useful radio frequency (RF) front end module (FEM) circuit that provides high linearity and power efficiency and meets the requirements of modern wireless communication standards such as 802.11 WLAN, 3G and 4G cellular standards, Bluetooth, ZigBee, etc. The configuration of the FEM circuit permits the use of common, relatively low cost semiconductor fabrication techniques such as standard CMOS processes. The FEM circuit includes a power amplifier made up of one or more sub-amplifiers having high and low power circuits and whose outputs are combined to yield the total desired power gain. An integrated multi-tap transformer having primary and secondary windings arranged in a novel configuration provide efficient power combining and transfer to the antenna of the power generated by the individual sub-amplifiers.