摘要:
Non-volatile storage elements having a reversible resistivity-switching element and techniques for fabricating the same are disclosed herein. The reversible resistivity-switching element may be formed by depositing an oxygen diffusion resistant material (e.g., heavily doped Si, W, WN) over the top electrode. A trap passivation material (e.g., fluorine, nitrogen, hydrogen, deuterium) may be incorporated into one or more of the bottom electrode, a metal oxide region, or the top electrode of the reversible resistivity-switching element. One embodiment includes a reversible resistivity-switching element having a bi-layer capping layer between the metal oxide and the top electrode. Fabricating the device may include depositing (un-reacted) titanium and depositing titanium oxide in situ without air brake. One embodiment includes incorporating titanium into the metal oxide of the reversible resistivity-switching element. The titanium might be implanted into the metal oxide while depositing the metal oxide, or after deposition of the metal oxide. Sub-plantation may be used to create a titanium region between two metal oxide regions.
摘要:
Non-volatile storage elements having a reversible resistivity-switching element and techniques for fabricating the same are disclosed herein. The reversible resistivity-switching element may be formed by depositing an oxygen diffusion resistant material (e.g., heavily doped Si, W, WN) over the top electrode. A trap passivation material (e.g., fluorine, nitrogen, hydrogen, deuterium) may be incorporated into one or more of the bottom electrode, a metal oxide region, or the top electrode of the reversible resistivity-switching element. One embodiment includes a reversible resistivity-switching element having a bi-layer capping layer between the metal oxide and the top electrode. Fabricating the device may include depositing (un-reacted) titanium and depositing titanium oxide in situ without air break. One embodiment includes incorporating titanium into the metal oxide of the reversible resistivity-switching element. The titanium might be implanted into the metal oxide while depositing the metal oxide, or after deposition of the metal oxide.
摘要:
During the manufacture of a set of non-volatile resistance-switching memory elements, a forming process is performed in which a voltage is applied over forming period until a conductive filament is formed in a resistance-switching layer. A heat source at a temperature of 50° C. to 150° C. is applied to expedite the forming process while reducing the required magnitude of the applied voltage. Manufacturing time and reliability are improved. After the forming process, an expedited training process can be performed in which a fixed number of cycles of voltage pulses are applied without verifying the memory elements. Subsequently, the memory elements are verified by determining their read current in an evaluation. Another fixed number of cycles of voltage pulses is applied without verifying the memory elements, if the memory elements do not pass the evaluation.
摘要:
A non-volatile resistance-switching memory element includes a resistance-switching element formed from a metal oxide layer having a dopant which is provided at a relatively high concentration such as 10% or greater. Further, the dopant is a cation having a relatively large ionic radius such as 70 picometers or greater, such as Magnesium, Chromium, Calcium, Scandium or Yttrium. A cubic fluorite phase lattice may be formed in the metal oxide even at room temperature so that switching power may be reduced. The memory element may be pillar-shaped, extending between first and second electrodes and being in series with a steering element such as a diode. The metal oxide layer may be deposited at the same time as the dopant. Or, using atomic layer deposition, an oxide of a first metal can be deposited, followed by an oxide of a second metal, followed by annealing to cause intermixing, in repeated cycles.
摘要:
A memory device in a 3-D read and write memory includes a resistance-changing layer, and a local contact resistance in series with, and local to, the resistance-changing layer. The local contact resistance is established by a junction between a semiconductor layer and a metal layer. Further, the local contact resistance has a specified level of resistance according to a doping concentration of the semiconductor and a barrier height of the junction. A method for fabricating such a memory device is also presented.
摘要:
A non-volatile resistance-switching memory element includes a resistance-switching element formed from a metal oxide layer having a dopant which is provided at a relatively high concentration such as 10% or greater. Further, the dopant is a cation having a relatively large ionic radius such as 70 picometers or greater, such as Magnesium, Chromium, Calcium, Scandium or Yttrium. A cubic fluorite phase lattice may be formed in the metal oxide even at room temperature so that switching power may be reduced. The memory element may be pillar-shaped, extending between first and second electrodes and being in series with a steering element such as a diode. The metal oxide layer may be deposited at the same time as the dopant. Or, using atomic layer deposition, an oxide of a first metal can be deposited, followed by an oxide of a second metal, followed by annealing to cause intermixing, in repeated cycles.
摘要:
During the manufacture of a set of non-volatile resistance-switching memory elements, a forming process is performed in which a voltage is applied over forming period until a conductive filament is formed in a resistance-switching layer. A heat source at a temperature of 50° C. to 150° C. is applied to expedite the forming process while reducing the required magnitude of the applied voltage. Manufacturing time and reliability are improved. After the forming process, an expedited training process can be performed in which a fixed number of cycles of voltage pulses are applied without verifying the memory elements. Subsequently, the memory elements are verified by determining their read current in an evaluation. Another fixed number of cycles of voltage pulses is applied without verifying the memory elements, if the memory elements do not pass the evaluation.
摘要:
A metal-insulator diode is disclosed. In one aspect, the metal-insulator diode comprises first and second electrode and first and second insulators arraigned as follows. An insulating region has a trench formed therein. The trench has a bottom and side walls. The first electrode, which comprises a first metal, is on the side walls and over the bottom of the trench. A first insulator has a first interface with the first electrode. At least a portion of the first insulator is within the trench. A second insulator has a second interface with the first insulator. At least a portion of the second insulator is within the trench. The second electrode, which comprises a second metal, is in contact with the second insulator. The second electrode at least partially fills the trench.
摘要:
A metal-insulator diode is disclosed. In one aspect, the metal-insulator diode comprises first and second electrode and first and second insulators arraigned as follows. An insulating region has a trench formed therein. The trench has a bottom and side walls. The first electrode, which comprises a first metal, is on the side walls and over the bottom of the trench. A first insulator has a first interface with the first electrode. At least a portion of the first insulator is within the trench. A second insulator has a second interface with the first insulator. At least a portion of the second insulator is within the trench. The second electrode, which comprises a second metal, is in contact with the second insulator. The second electrode at least partially fills the trench.
摘要:
A metal-insulator diode is disclosed. In one aspect, the metal-insulator diode comprises a first electrode comprising a first metal, a first region comprising a first insulating material, a second region comprising a second insulating material, and a second electrode comprising a second metal. The first region and the second region reside between the first electrode and the second electrode. The second insulating material is doped with nitrogen. Note that the second insulating material may have an interface with either the first electrode or the second electrode.