摘要:
Non-volatile storage elements having a reversible resistivity-switching element and techniques for fabricating the same are disclosed herein. The reversible resistivity-switching element may be formed by depositing an oxygen diffusion resistant material (e.g., heavily doped Si, W, WN) over the top electrode. A trap passivation material (e.g., fluorine, nitrogen, hydrogen, deuterium) may be incorporated into one or more of the bottom electrode, a metal oxide region, or the top electrode of the reversible resistivity-switching element. One embodiment includes a reversible resistivity-switching element having a bi-layer capping layer between the metal oxide and the top electrode. Fabricating the device may include depositing (un-reacted) titanium and depositing titanium oxide in situ without air brake. One embodiment includes incorporating titanium into the metal oxide of the reversible resistivity-switching element. The titanium might be implanted into the metal oxide while depositing the metal oxide, or after deposition of the metal oxide. Sub-plantation may be used to create a titanium region between two metal oxide regions.
摘要:
Non-volatile storage elements having a reversible resistivity-switching element and techniques for fabricating the same are disclosed herein. The reversible resistivity-switching element may be formed by depositing an oxygen diffusion resistant material (e.g., heavily doped Si, W, WN) over the top electrode. A trap passivation material (e.g., fluorine, nitrogen, hydrogen, deuterium) may be incorporated into one or more of the bottom electrode, a metal oxide region, or the top electrode of the reversible resistivity-switching element. One embodiment includes a reversible resistivity-switching element having a bi-layer capping layer between the metal oxide and the top electrode. Fabricating the device may include depositing (un-reacted) titanium and depositing titanium oxide in situ without air break. One embodiment includes incorporating titanium into the metal oxide of the reversible resistivity-switching element. The titanium might be implanted into the metal oxide while depositing the metal oxide, or after deposition of the metal oxide.
摘要:
A metal-insulator diode is disclosed. In one aspect, the metal-insulator diode comprises first and second electrode and first and second insulators arraigned as follows. An insulating region has a trench formed therein. The trench has a bottom and side walls. The first electrode, which comprises a first metal, is on the side walls and over the bottom of the trench. A first insulator has a first interface with the first electrode. At least a portion of the first insulator is within the trench. A second insulator has a second interface with the first insulator. At least a portion of the second insulator is within the trench. The second electrode, which comprises a second metal, is in contact with the second insulator. The second electrode at least partially fills the trench.
摘要:
A metal-insulator diode is disclosed. In one aspect, the metal-insulator diode comprises first and second electrode and first and second insulators arraigned as follows. An insulating region has a trench formed therein. The trench has a bottom and side walls. The first electrode, which comprises a first metal, is on the side walls and over the bottom of the trench. A first insulator has a first interface with the first electrode. At least a portion of the first insulator is within the trench. A second insulator has a second interface with the first insulator. At least a portion of the second insulator is within the trench. The second electrode, which comprises a second metal, is in contact with the second insulator. The second electrode at least partially fills the trench.
摘要:
A metal-insulator diode is disclosed. In one aspect, the metal-insulator diode comprises a first electrode comprising a first metal, a first region comprising a first insulating material, a second region comprising a second insulating material, and a second electrode comprising a second metal. The first region and the second region reside between the first electrode and the second electrode. The second insulating material is doped with nitrogen. Note that the second insulating material may have an interface with either the first electrode or the second electrode.
摘要:
A memory device in a 3-D read and write memory includes memory cells. Each memory cell includes a resistance-switching memory element (RSME) in series with a steering element. The RSME has first and second resistance-switching layers on either side of a conductive intermediate layer, and first and second electrodes at either end of the RSME. The first and second resistance-switching layers can both have a bipolar or unipolar switching characteristic. In a set or reset operation of the memory cell, an ionic current flows in the resistance-switching layers, contributing to a switching mechanism. An electron flow, which does not contribute to the switching mechanism, is reduced due to scattering by the conductive intermediate layer, to avoid damage to the steering element. Particular materials and combinations of materials for the different layers of the RSME are provided.
摘要:
A memory device in a 3-D read and write memory includes memory cells. Each memory cell includes a resistance-switching memory element (RSME) in series with a steering element. The RSME has first and second resistance-switching layers on either side of a conductive intermediate layer, and first and second electrodes at either end of the RSME. The first and second resistance-switching layers can both have a bipolar or unipolar switching characteristic. In a set or reset operation of the memory cell, an ionic current flows in the resistance-switching layers, contributing to a switching mechanism. An electron flow, which does not contribute to the switching mechanism, is reduced due to scattering by the conductive intermediate layer, to avoid damage to the steering element. Particular materials and combinations of materials for the different layers of the RSME are provided.
摘要:
A memory system includes a plurality of non-volatile storage elements that each comprise a diode (or other steering device) in series with reversible resistance-switching material. One or more circuits in the memory system program the non-volatile storage elements by changing the reversible resistance-switching material of one or more non-volatile storage elements to a first resistance state. The memory system can also change the reversible resistance-switching material of one or more of the non-volatile storage elements from the first resistance state to a second resistance state by applying one or more pairs of opposite polarity voltage conditions (e.g., pulses) to the respective diodes (or other steering devices) such that current flows in the diodes (or other steering devices) without operating the diodes (or other steering devices) in breakdown condition.
摘要:
A non-volatile memory device includes a substrate having a first active region and a second active region. A first floating gate is provided over the first active region and having an edge, the first floating gate being made of a conductive material. A first spacer is connected to the edge of the first floating gate and being made of the same conductive material as that of the first floating gate. A control gate is provided proximate to the floating gate.
摘要:
Non-volatile memory transistors are provided that include a floating gate formed from first and second layers of material such as polysilicon. The second floating gate layer is selectively grown or deposited on top of the first gate layer, eliminating the need to mask for positioning of the second floating gate layer. The memory transistors are separated by isolation regions. The second floating gate layer overlaps portions of the isolation regions to provide a high control gate-to-floating gate coupling ratio. The process enables smaller memory transistors. Floating gate to isolation overlap, and therefore floating gate to floating gate spacing, is controlled by selective deposition or selective epitaxial growth of the second polysilicon layer.