摘要:
An optical system for semiconductor lithography including a plurality of optical components, as well as related components and methods, are disclosed. The apparatus can include an optical component that can be moved by a distance along a straight line within a time of between 5 ms and 500 ms. The straight line can have a polar and azimuth angle of between 0° and 90°, and a distance between the straight line and an optical axis of the apparatus being less than a cross-sectional dimension of a projection exposure beam bundle of the projection exposure apparatus. The apparatus can also include a guide unit configured to guide the optical component. The apparatus can further include a drive unit configured to drive the optical component via drive forces so that torques generated by inertial forces of the optical component and of optional components concomitantly moved with the optical component, and the torques generated by the drive forces, which act on the guide unit, compensate for one another to less than 10%.
摘要:
An optical system for semiconductor lithography including a plurality of optical components, as well as related components and methods, are disclosed. The apparatus can include an optical component that can be moved by a distance along a straight line within a time of between 5 ms and 500 ms. The straight line can have a polar and azimuth angle of between 0° and 90°, and a distance between the straight line and an optical axis of the apparatus being less than a cross-sectional dimension of a projection exposure beam bundle of the projection exposure apparatus. The apparatus can also include a guide unit configured to guide the optical component. The apparatus can further include a drive unit configured to drive the optical component via drive forces so that torques generated by inertial forces of the optical component and of optional components concomitantly moved with the optical component, and the torques generated by the drive forces, which act on the guide unit, compensate for one another to less than 10%.
摘要:
Semiconductor lithography system includes a plurality of optical components, including an optical component movable a distance along a straight line within a time of between 5 ms and 500 ms. The straight line can have a polar and azimuth angle of between 0° and 90°, and a distance between the straight line and an optical axis of the apparatus being less than a cross-sectional dimension of a projection exposure beam bundle of the projection exposure apparatus. The apparatus can also include a guide unit configured to guide the optical component. The apparatus can further include a drive unit configured to drive the optical component via drive forces so that torques generated by inertial forces of the optical component and of optional components concomitantly moved with the optical component, and the torques generated by the drive forces, which act on the guide unit, compensate for one another to less than 10%.
摘要:
An optical system for semiconductor lithography including a plurality of optical components, as well as related components and methods, are disclosed. The apparatus can include an optical component that can be moved by a distance along a straight line within a time of between 5 ms and 500 ms. The straight line can have a polar and azimuth angle of between 0° and 90°, and a distance between the straight line and an optical axis of the apparatus being less than a cross-sectional dimension of a projection exposure beam bundle of the projection exposure apparatus. The apparatus can also include a guide unit configured to guide the optical component. The apparatus can further include a drive unit configured to drive the optical component via drive forces so that torques generated by inertial forces of the optical component and of optional components concomitantly moved with the optical component, and the torques generated by the drive forces, which act on the guide unit, compensate for one another to less than 10%.
摘要:
An optical system for semiconductor lithography including a plurality of optical components, as well as related components and methods, are disclosed. The apparatus can include an optical component that can be moved by a distance along a straight line within a time of between 5 ms and 500 ms. The straight line can have a polar and azimuth angle of between 0° and 90°, and a distance between the straight line and an optical axis of the apparatus being less than a cross-sectional dimension of a projection exposure beam bundle of the projection exposure apparatus. The apparatus can also include a guide unit configured to guide the optical component. The apparatus can further include a drive unit configured to drive the optical component via drive forces so that torques generated by inertial forces of the optical component and of optional components concomitantly moved with the optical component, and the torques generated by the drive forces, which act on the guide unit, compensate for one another to less than 10%.
摘要:
An illumination system of a microlithographic projection exposure apparatus has a pupil surface and an essentially flat arrangement of desirably individually drivable beam deviating elements for variable illumination of the pupil surface. Each beam deviating element allows deviation of a projection light beam incident on it to be achieved as a function of a control signal applied to the beam deviating element. A measurement illumination instrument directs a measurement light beam, independent of the projection light beams, onto a beam deviating element. A detector instrument records the measurement light beam after deviation by the beam deviating element. An evaluation unit determines the deviation of the projection light beam from measurement signals provided by the detector instrument.
摘要:
Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
摘要:
An illumination system of a microlithographic projection exposure apparatus has a pupil surface and an essentially flat arrangement of desirably individually drivable beam deviating elements for variable illumination of the pupil surface. Each beam deviating element allows deviation of a projection light beam incident on it to be achieved as a function of a control signal applied to the beam deviating element. A measurement illumination instrument directs a measurement light beam, independent of the projection light beams, onto a beam deviating element. A detector instrument records the measurement light beam after deviation by the beam deviating element. An evaluation unit determines the deviation of the projection light beam from measurement signals provided by the detector instrument.
摘要:
Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.
摘要:
Microlithographic illumination system includes individually drivable elements to variably illuminate a pupil surface of the system. Each element deviates an incident light beam based on a control signal applied to the element. The system also includes an instrument to provide a measurement signal, and a model-based state estimator configured to compute, for each element, an estimated state vector based on the measurement signal. The estimated state vector represents: a deviation of a light beam caused by the element; and a time derivative of the deviation. The illumination system further includes a regulator configured to receive, for each element: a) the estimated state vector; and b) target values for: i) the deviation of the light beam caused by the deviating element; and ii) the time derivative of the deviation.