摘要:
An electrophotographic photosensitive element, e.g. for a photocopier or laser printer, comprises a substrate and a plurality of layers on the substrate including a photoconductive layer of a-Si:H and a protective and lubricating layer which is outermost from said substrate. To provide wear resistance and long life-time of the protective and lubricating layer, this layer comprises a microporous solid material having a pore structure which extends substantially over the whole thickness of the material and a hydrophobic lubricant carried by said solid material. The lubricant includes a liquid film and often times a non-particulate solid film, and provides at least part of the outer surface of the element and is present also in the pores of said microporous solid material.
摘要:
An electrophotographic member comprising a support, a photoconductive layer formed thereon, and a surface layer formed thereon, said surface layer including or attaching a lubricating agent having a perfluoropolyoxyalkyl or perfluoropolyoxyalkylene group to form an organic surface protective lubricating layer, and a fixing group to be fixed to the surface layer, is excellent in moisture resistance, wear resistance and cleaning properties and thus useful in an electrophotographic apparatus with a long life and high reliability.
摘要:
An electrophotographic photoreceptor comprising a photoconductive layer comprising a photoconductor, a support for the photoconductive layer and a surface layer formed on the photoconductive layer and comprising a curable resin film and an inorganic insulator pieces having a size larger than the film thickness of the curable resin film. In order to prevent the image blurring of an a-Si:H photoreceptor, on the outermost surface of the photoreceptor was formed a surface layer having a structure in which inorganic insulator pieces have protruded from the curable resin film. Since the curable resin is of high resistance and shows no quality change by corona irradiation, and besides the protruding inorganic insulator pieces prevent the abrasion of the resin, the surface layer having a long life and excellent humidity resistance, durability for corona irradiation and abrasion resistance can be realized. Further, by covering the surface layer with a fluorine-containing lubricant, the surface layer having a low friction coefficient and excellent cleaning characteristics is obtained, and besides the resin constituting the surface layer absorbs little moisture. As a result, it becomes possible to use the a-Si:H photoreceptors without a heater. Also, the surface layer of the present invention can be removed and then re-formed.
摘要:
There is provided a liquid crystal display device in which light leaks near spacers are prevented. The liquid crystal display device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed in opposition to each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer, includes spacers formed on a liquid-crystal-side surface of one of the substrates, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes formed on the upper surface of the insulating film, each of which serves as one electrode contributing to control of the optical transmissivity of the liquid crystal layer. Each of the spacers has a vertex surface disposed in opposition to any of the signal lines, and a portion of each of the electrodes is extended to the upper surface of a corresponding one of the signal lines and the extended portion is opposed to a part of the vertex surface of a spacer disposed in opposition to the corresponding one of the signal lines.
摘要:
There is provided a liquid crystal display device in which light leaks near spacers are prevented. The liquid crystal display device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed in opposition to each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer, includes spacers formed on a liquid-crystal-side surface of one of the substrates, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes formed on the upper surface of the insulating film, each of which serves as one electrode contributing to control of the optical transmissivity of the liquid crystal layer. Each of the spacers has a vertex surface disposed in opposition to any of the signal lines, and a portion of each of the electrodes is extended to the upper surface of a corresponding one of the signal lines and the extended portion is opposed to a part of the vertex surface of a spacer disposed in opposition to the corresponding one of the signal lines.
摘要:
Using a lower electrode as a photomask, a lyophobic region having generally the same pattern as that of the lower electrode and a lyophilic region having a pattern which is generally the inversion of the lower electrode pattern are formed on an insulating film. A conductive ink is applied to the lyophobic region and baked. Thus, an upper electrode having a pattern which is generally the inversion of the lower electrode pattern is formed in a self-alignment manner. Therefore no misalignment occurs even if a printing method is used. Thus, a semiconductor device such as an active-matrix thin-film transistor substrate can be fabricated by using a printing method.
摘要:
In the present invention, a lower electrode is utilized as a photomask to form a liquid-repellent region having a generally same pattern shape as that of the lower electrode and a liquid-attracting region having a generally reversed pattern shape on an insulating film. A conductive ink is coated and calcined in the liquid-attracting region to form an upper electrode having a generally reversed pattern shape to the lower electrode in a self-aligned manner, eliminating the occurrence of misregistration even when a printing method is used. Consequently, semiconductor devices such as an active matrix thin film transistor substrate can be formed using a printing method.
摘要:
There is provided a liquid crystal display device in which light leaks near spacers are prevented. The liquid crystal display device controls the optical transmissivity of a liquid crystal layer interposed between substrates disposed in opposition to each other, by means of an electric field generated in the layer-thickness direction of the liquid crystal layer, includes spacers formed on a liquid-crystal-side surface of one of the substrates, signal lines formed on a liquid-crystal-side surface of the other substrate, an insulating film formed to cover the signal lines, and electrodes formed on the upper surface of the insulating film, each of which serves as one electrode contributing to control of the optical transmissivity of the liquid crystal layer. Each of the spacers has a vertex surface disposed in opposition to any of the signal lines, and a portion of each of the electrodes is extended to the upper surface of a corresponding one of the signal lines and the extended portion is opposed to a part of the vertex surface of a spacer disposed in opposition to the corresponding one of the signal lines.
摘要:
The present method prevents malfunctions in switching caused by a light leakage current in an active matrix type thin film transistor substrate for a liquid crystal display and prevents display failures, by selectively disposing a self assembled monolayer film in a gate electrode-projected region of the surface of an insulator film with high definition, and by selectively improving the orientation order of an organic semiconductor film only in the gate electrode-projected region without improving the order at an irradiated portion with light outside the gate electrode-projected region.
摘要:
The liquid crystal display apparatus includes a liquid crystal display, a backlight unit for emitting rays of light of three or more colors, the ray of each color being controlled, and applying these rays of light onto the liquid crystal display. A controller is further provided for controlling a change of display data of each color of the liquid crystal display and an emitted light quantity of each color of the backlight unit at a time, based on a video signal being inputted for displaying the corresponding image and an output signal sent from an ambient light sensor for sensing ambient light.