Abstract:
An electrode composition for removing nitrogen oxide, includes: a catalytic material and an adsorption material, wherein the adsorption material is a perovskite material of formula AaBbO3-δ, wherein 0.9
Abstract:
A method for oxidizing a carbonaceous material, the method comprising contacting the carbonaceous material with an effective amount of a catalytic material of formula AxMyWOz, and initiating the oxidization of the carbonaceous material at a first temperature lower than a second temperature at which the carbonaceous material is initiated to oxidize without a catalyst, wherein A is at least one of cesium and potassium, M is different from A and is at least one of cesium, potassium, magnesium, calcium, strontium, barium, iron, cobalt, nickel, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and bismuth, 0≦x≦1, 0≦y≦1, 2.2≦z≦3, when x=0, y>0, and when y=0, x>0.
Abstract:
A material is described of formula NaxMyAlaSibO67 with Face Centered Cubic (fcc) lattices forming F -4 3 m cubic structure, wherein M is at least one of lithium, potassium, rubidium, caesium, vanadium, chromium, iron, cobalt, nickel, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold, and cerium; 0 0; 1≦a3; 1≦b≦3; and 0
Abstract:
Described herein are systems and methods for evaluating and mitigating the wax risks of a given hydrocarbon composition such as crude oil. The disclosed systems and methods enable rapid and ready prediction of wax risks using algorithms based on a small sample of the hydrocarbon composition. The wax risks are predicted using predictive models developed from machine learning. The disclosed systems and methods include mitigation strategies for wax risks that can include chemical additives, operation changes, and/or hydrocarbon blend.
Abstract:
A method for protecting a surface of an article from sulfate corrosion resulting from exposure to a sulfate containing material at an elevated temperature includes coating the surface with a nickel based material to form an anti-corrosion coating. The nickel based material includes NiO, a spinel of formulation AB2O4, or a combination thereof, wherein A includes nickel, and B includes iron or a combination of manganese and a B site dopant.