Abstract:
A method for fabricating a photovoltaic device includes applying a diblock copolymer layer on a substrate and removing a first polymer material from the diblock copolymer layer to form a plurality of distributed pores. A pattern forming layer is deposited on a remaining surface of the diblock copolymer layer and in the pores in contact with the substrate. The diblock copolymer layer is lifted off and portions of the pattern forming layer are left in contact with the substrate. The substrate is etched using the pattern forming layer to protect portions of the substrate to form pillars in the substrate such that the pillars provide a radiation absorbing structure in the photovoltaic device.
Abstract:
Silicon-carbon alloy structures can be formed as inverted U-shaped structures around semiconductor fins by a selective epitaxy process. A planarization dielectric layer is formed to fill gaps among the silicon-carbon alloy structures. After planarization, remaining vertical portions of the silicon-carbon alloy structures constitute silicon-carbon alloy fins, which can have sublithographic widths. The semiconductor fins may be replaced with replacement dielectric material fins. In one embodiment, employing a patterned mask layer, sidewalls of the silicon-carbon alloy fins can be removed around end portions of each silicon-carbon alloy fin. An anneal is performed to covert surface portions of the silicon-carbon alloy fins into graphene layers. In one embodiment, each graphene layer can include only a horizontal portion in a channel region, and include a horizontal portion and sidewall portions in source and drain regions. If a patterned mask layer is not employed, each graphene layer can include only a horizontal portion.