Abstract:
Field Effect Transistors (FETs), Integrated Circuit (IC) chips including the FETs, and a method of forming the FETs and IC. FET locations and adjacent source/drain regions are defined on a semiconductor wafer, e.g., a silicon on insulator (SOI) wafer. Source/drains are formed in source/drains regions. A stopping layer is formed on source/drains. Contact spacers are formed above gates. Source/drain contacts are formed to the stopping layer, e.g., after converting the stopping layer to silicide. The contact spacers separate source/drain contacts from each other.
Abstract:
A semiconductor structure includes a III-V monocrystalline layer and a germanium surface layer. An interlayer is formed directly between the III-V monocrystalline layer and the germanium surface layer from a material selected to provide stronger nucleation bonding between the interlayer and the germanium surface layer than nucleation bonding that would be achievable directly between the III-V monocrystalline layer and the germanium surface layer such that a continuous, relatively defect-free germanium surface layer is provided.
Abstract:
A single crystalline silicon carbide layer can be grown on a single crystalline sapphire substrate. Subsequently, a graphene layer can be formed by conversion of a surface layer of the single crystalline silicon layer during an anneal at an elevated temperature in an ultrahigh vacuum environment. Alternately, a graphene layer can be deposited on an exposed surface of the single crystalline silicon carbide layer. A graphene layer can also be formed directly on a surface of a sapphire substrate or directly on a surface of a silicon carbide substrate. Still alternately, a graphene layer can be formed on a silicon carbide layer on a semiconductor substrate. The commercial availability of sapphire substrates and semiconductor substrates with a diameter of six inches or more allows formation of a graphene layer on a commercially scalable substrate for low cost manufacturing of devices employing a graphene layer.
Abstract:
A semiconductor-carbon alloy layer is formed on the surface of a semiconductor substrate, which may be a commercially available semiconductor substrate such as a silicon substrate. The semiconductor-carbon alloy layer is converted into at least one graphene layer during a high temperature anneal, during which the semiconductor material on the surface of the semiconductor-carbon alloy layer is evaporated selective to the carbon atoms. As the semiconductor atoms are selectively removed and the carbon concentration on the surface of the semiconductor-carbon alloy layer increases, the remaining carbon atoms in the top layers of the semiconductor-carbon alloy layer coalesce to form a graphene layer having at least one graphene monolayer. Thus, a graphene layer may be provided on a commercially available semiconductor substrate having a diameter of 200 mm or 300 mm.
Abstract:
A method for manufacturing a semiconductor device, comprises forming an organic planarization layer on a plurality of gates on a substrate, wherein the plurality of gates each include a spacer layer thereon, forming an oxide layer on the organic planarization layer, removing a portion of the oxide layer to expose the organic planarization layer, stripping the organic planarization layer to form a cavity, patterning a direct lithographically-patternable gap dielectric on at least one of the gates in the cavity, and depositing a conductive contact in a remaining portion of the cavity.
Abstract:
A photo-patternable dielectric material is provided to a structure which includes a substrate having at least one gate structure. The photo-patternable dielectric material is then patterned forming a plurality of sacrificial contact structures adjacent the at least one gate structure. A planarized middle-of-the-line dielectric material is then provided in which an uppermost surface of each of the sacrificial contact structures is exposed. Each of the exposed sacrificial contact structures is then removed providing contact openings within the planarized middle-of-the-line dielectric material. A conductive metal-containing material is formed within each contact opening.
Abstract:
Silicon-carbon alloy structures can be formed as inverted U-shaped structures around semiconductor fins by a selective epitaxy process. A planarization dielectric layer is formed to fill gaps among the silicon-carbon alloy structures. After planarization, remaining vertical portions of the silicon-carbon alloy structures constitute silicon-carbon alloy fins, which can have sublithographic widths. The semiconductor fins may be replaced with replacement dielectric material fins. In one embodiment, employing a patterned mask layer, sidewalls of the silicon-carbon alloy fins can be removed around end portions of each silicon-carbon alloy fin. An anneal is performed to covert surface portions of the silicon-carbon alloy fins into graphene layers. In one embodiment, each graphene layer can include only a horizontal portion in a channel region, and include a horizontal portion and sidewall portions in source and drain regions. If a patterned mask layer is not employed, each graphene layer can include only a horizontal portion.