Abstract:
A semiconductor fin suspended above a top surface of a semiconductor layer and supported by a gate structure is formed. An insulator layer is formed between the top surface of the semiconductor layer and the gate structure. A gate spacer is formed, and physically exposed portions of the semiconductor fin are removed by an anisotropic etch. Subsequently, physically exposed portions of the insulator layer can be etched with a taper. Alternately, a disposable spacer can be formed prior to an anisotropic etch of the insulator layer. The lateral distance between two openings in the dielectric layer across the gate structure is greater than the lateral distance between outer sidewalls of the gate spacers. Selective deposition of a semiconductor material can be performed to form raised active regions.
Abstract:
A method for forming a field effect transistor device includes forming a gate stack portion on a substrate, forming a spacer portion on the gates stack portion and a portion of the substrate, removing an exposed portion of the substrate, epitaxially growing a first silicon material on the exposed portion of the substrate, removing a portion of the epitaxially grown first silicon material to expose a second portion of the substrate, and epitaxially growing a second silicon material on the exposed second portion of the substrate and the first silicon material.
Abstract:
A semiconductor device including at least one suspended channel structure of a silicon including material, and a gate structure present on the suspended channel structure. At least one gate dielectric layer is present surrounding the suspended channel structure, and at least one gate conductor is present on the at least one gate dielectric layer. Source and drain structures may be composed of a silicon and germanium including material. The source and drain structures are in contact with the source and drain region ends of the suspended channel structure through a silicon cladding layer.
Abstract:
A semiconductor structure may include a semiconductor fin, a gate over the semiconductor fin, a spacer on a sidewall of the gate, an angled recess region in an end of the semiconductor fin beneath the spacer, and a first semiconductor region filling the angled recess. The angled recess may be v-shaped or sigma shaped. The structure may further include a second semiconductor region in contact with the first semiconductor region and the substrate. The structure may be formed by forming a gate above a portion of the semiconductor fin on a substrate, forming a spacer on a sidewall of the gate; removing a portion of the semiconductor fin not covered by the spacer or the gate to expose a sidewall of the fin, etching the sidewall of the fin to form an angled recess region beneath the spacer, and filling the angled recess region with a first epitaxial semiconductor region.
Abstract:
Silicon-carbon alloy structures can be formed as inverted U-shaped structures around semiconductor fins by a selective epitaxy process. A planarization dielectric layer is formed to fill gaps among the silicon-carbon alloy structures. After planarization, remaining vertical portions of the silicon-carbon alloy structures constitute silicon-carbon alloy fins, which can have sublithographic widths. The semiconductor fins may be replaced with replacement dielectric material fins. In one embodiment, employing a patterned mask layer, sidewalls of the silicon-carbon alloy fins can be removed around end portions of each silicon-carbon alloy fin. An anneal is performed to covert surface portions of the silicon-carbon alloy fins into graphene layers. In one embodiment, each graphene layer can include only a horizontal portion in a channel region, and include a horizontal portion and sidewall portions in source and drain regions. If a patterned mask layer is not employed, each graphene layer can include only a horizontal portion.
Abstract:
A method for forming a field effect transistor device includes forming a gate stack portion on a substrate, forming a spacer portion on the gates stack portion and a portion of the substrate, removing an exposed portion of the substrate, epitaxially growing a first silicon material on the exposed portion of the substrate, removing a portion of the epitaxially grown first silicon material to expose a second portion of the substrate, and epitaxially growing a second silicon material on the exposed second portion of the substrate and the first silicon material.
Abstract:
A semiconductor substrate inspection system includes an e-beam inspection system configured to deliver electrons to a specimen semiconductor substrate. A sensor is configured to detect reflected electrons that reflect off the surface of the specimen semiconductor substrate. An analysis unit is configured to determine a number of electrons received by the semiconductor substrate, and to determine at least one target region including at least one defect of the semiconductor substrate. A reference image module is in electrical communication with the analysis unit. The reference image module is configured to generate a first digital image having a plurality of pixels, and to adjust a gray-scale level of the pixels included in the target region based on the number electrons included in each pixel to generate a second digital image that excludes the at least one defect.
Abstract:
A semiconductor fin suspended above a top surface of a semiconductor layer and supported by a gate structure is formed. An insulator layer is formed between the top surface of the semiconductor layer and the gate structure. A gate spacer is formed, and physically exposed portions of the semiconductor fin are removed by an anisotropic etch. Subsequently, physically exposed portions of the insulator layer can be etched with a taper. Alternately, a disposable spacer can be formed prior to an anisotropic etch of the insulator layer. The lateral distance between two openings in the dielectric layer across the gate structure is greater than the lateral distance between outer sidewalls of the gate spacers. Selective deposition of a semiconductor material can be performed to form raised active regions.