Abstract:
A sensor for on-chip monitoring the effects of operating conditions on a circuit, Integrated Circuit (IC) chips including the sensors, and a method of monitoring operating condition effects on-chip circuits, e.g., for the occurrence of electromigration. The sensor includes a multi-fingered driver associated with a monitored circuit, sensitive to known circuit parameter sensitivities. Sense and control logic circuit selectively driving the multi-fingered driver, and selectively monitoring for an expected multi-fingered driver response.
Abstract:
System and method using low voltage current measurements to measure voltage network currents in an integrated circuit (IC). In one aspect, a low voltage current leakage test is applied voltage networks for the IC or microchip via one or more IC chip connectors. One or multiple specifications are developed based on chip's circuit delay wherein a chip is aborted or sorted into a lesser reliability sort depending whether the chip fails specification. Alternately, a low voltage current leakage test begins an integrated circuit test flow. Then there is run a high voltage stress, and a second low voltage current leakage test is thereafter added. Then, there is compared the second low voltage test to the first low V test, and if the measured current is less on second test, this is indicative of a defect present which may result in either a scrap or downgrade reliability of chip.
Abstract:
A sensor for on-chip monitoring the effects of operating conditions on a circuit, Integrated Circuit (IC) chips including the sensors, and a method of monitoring operating condition effects on-chip circuits, e.g., for the occurrence of electromigration. The sensor includes a multi-fingered driver associated with a monitored circuit, sensitive to known circuit parameter sensitivities. Sense and control logic circuit selectively driving the multi-fingered driver, and selectively monitoring for an expected multi-fingered driver response.
Abstract:
An efficient method of calculating maximum current limits for library gates in which a current limit includes the impact of self-heating effects associated with the maximum current. A maximum current solution is obtained in a self-consistent fashion, providing a way of determining the self-consistent solution in a rapid fashion without extensive numerical calculations or simulations. The present method provides a practical approach for characterizing a large library of gates for use in CMOS designs.
Abstract:
An efficient method of calculating maximum current limits for library gates in which a current limit includes the impact of self-heating effects associated with the maximum current. A maximum current solution is obtained in a self-consistent fashion, providing a way of determining the self-consistent solution in a rapid fashion without extensive numerical calculations or simulations. The present method provides a practical approach for characterizing a large library of gates for use in CMOS designs.