Abstract:
Embodiments of the present invention provide CMOS structures and methods of gate formation that combine a keep-cap scheme in which a protective layer is maintained on a PFET during a replacement metal gate process that utilizes an NFET-first process flow. Selective nitridation is used to provide nitrogen to the NFET while the PFET is protected from nitrogen by the keep-cap. Additional dopants are provided to the NFET using a gate stack dopant material (GSDM) layer.
Abstract:
A method of fabricating advanced multi-threshold field effect transistors using a replacement metal gate process. A first method includes thinning layers composed of multilayer film stacks and incorporating a portion of the remaining thinned film in some transistors. A second method includes patterning dopant materials for a high-k dielectric by using thinning layers composed of multilayer thin film stacks, or in other embodiments, by a single thinning layer.
Abstract:
A method of fabricating advanced multi-threshold field effect transistors using a replacement metal gate process. A first method includes thinning layers composed of multilayer film stacks and incorporating a portion of the remaining thinned film in some transistors. A second method includes patterning dopant materials for a high-k dielectric by using thinning layers composed of multilayer thin film stacks, or in other embodiments, by a single thinning layer.
Abstract:
Embodiments of the present invention provide CMOS structures and methods of gate formation that combine a keep-cap scheme in which a protective layer is maintained on a PFET during a replacement metal gate process that utilizes an NFET-first process flow. Selective nitridation is used to provide nitrogen to the NFET while the PFET is protected from nitrogen by the keep-cap. Additional dopants are provided to the NFET using a gate stack dopant material (GSDM) layer.
Abstract:
A method includes forming an n-FET device and a p-FET device on a substrate, each of the n-FET device and the p-FET device include a metal gate stack consisting of a titanium-aluminum carbide (TiAlC) layer above and in direct contact with a titanium nitride (TiN) cap, and removing, from the p-FET device, the TiAlC layer selective to the TiN cap. The removal of the TiAlC layer includes using a selective TiAlC to TiN wet etch chemistry solution with a substantially high TiAlC to TiN etch ratio such that the TiN cap remains in the p-FET device.