Abstract:
Integrated circuits having silicide contacts with reduced contact resistance and methods for fabricating integrated circuits having silicide contacts with reduced contact resistance are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with fin structures having source/drain regions in PFET areas and in NFET areas. The method includes selectively forming a contact resistance modulation material on the source/drain regions in the PFET areas. Further, the method includes depositing a band-edge workfunction metal overlying the source/drain regions in the PFET areas and in the NFET areas.
Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming a layered fin overlying a substrate, where the layered fin includes an SiGe layer and an Si layer. The SiGe layer and the Si layer alternate along a height of the layered fin. A dummy gate is formed overlying the substrate and the layered fin, and a source and a drain area formed in contact with the layered fin. The dummy gate is removed to expose the SiGe layer and the Si layer, and the Si layer is removed to produce an SiGe nanowire. A high K dielectric layer that encases the SiGe nanowire between the source and the drain is formed, and a replacement metal gate is formed so that the replacement metal gate encases the high K dielectric layer and the SiGe nanowire between the source and drain.
Abstract:
Integrated circuits having silicide contacts with reduced contact resistance and methods for fabricating integrated circuits having silicide contacts with reduced contact resistance are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate having selected source/drain regions and non-selected source/drain regions. The method forms a contact resistance modulation material over the selected source/drain regions. Further, the method forms a metal layer over the selected and non-selected source/drain regions. The method includes annealing the metal layer to form silicide contacts on the selected and non-selected source/drain regions.
Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming a layered fin overlying a substrate, where the layered fin includes an SiGe layer and an Si layer. The SiGe layer and the Si layer alternate along a height of the layered fin. A dummy gate is formed overlying the substrate and the layered fin, and a source and a drain area formed in contact with the layered fin. The dummy gate is removed to expose the SiGe layer and the Si layer, and the Si layer is removed to produce an SiGe nanowire. A high K dielectric layer that encases the SiGe nanowire between the source and the drain is formed, and a replacement metal gate is formed so that the replacement metal gate encases the high K dielectric layer and the SiGe nanowire between the source and drain.
Abstract:
Integrated circuits having silicide contacts with reduced contact resistance and methods for fabricating integrated circuits having silicide contacts with reduced contact resistance are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with fin structures having source/drain regions in PFET areas and in NFET areas. The method includes selectively forming a contact resistance modulation material on the source/drain regions in the PFET areas. Further, the method includes depositing a band-edge workfunction metal overlying the source/drain regions in the PFET areas and in the NFET areas.
Abstract:
In one example, the method disclosed herein includes forming at least one fin for a FinFET device in a semiconducting substrate, performing at least one process operation to form a region in the at least one fin that contains a metal diffusion inhibiting material, depositing a layer of metal on the region in the at least one fin and forming a metal silicide region on the at least one fin.
Abstract:
Integrated circuits with relaxed silicon and germanium fins and methods for fabricating such integrated circuits are provided. The method includes a forming a crystalline silicon and germanium composite layer overlying a crystalline silicon substrate, where a composite layer crystal lattice is relaxed. A fin is formed in the composite layer, and a gate is formed overlying the fin. A portion of the fin is removed on opposite sides of the gate to form a drain cavity and a source cavity, and a source and a drain are formed in the source cavity and drain cavity, respectively.
Abstract:
Integrated circuits with dual silicide contacts and methods for fabricating integrated circuits with dual silicide contacts are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate having PFET areas and NFET areas. The method selectively forms first silicide contacts from a first metal in the PFET areas. Further, the method selectively forms second silicide contacts from a second metal in the NFET areas. The second metal is different from the first metal.
Abstract:
Integrated circuits having metal-insulator-semiconductor (MIS) contact structures and methods for fabricating integrated circuits having metal-insulator-semiconductor (MIS) contact structures are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a fin structure formed from semiconductor material overlying a semiconductor substrate. The method includes depositing a layer of high-k dielectric material over the fin structure. Further, the method includes forming a metal layer or layers over the layer of high-k dielectric material to provide the fin structure with a metal-insulator-semiconductor (MIS) contact structure.
Abstract:
Integrated circuits having silicide contacts with reduced contact resistance and methods for fabricating integrated circuits having silicide contacts with reduced contact resistance are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate having selected source/drain regions and non-selected source/drain regions. The method forms a contact resistance modulation material over the selected source/drain regions. Further, the method forms a metal layer over the selected and non-selected source/drain regions. The method includes annealing the metal layer to form silicide contacts on the selected and non-selected source/drain regions.