LATERAL BIPOLAR JUNCTION TRANSISTOR AND METHOD

    公开(公告)号:US20220376093A1

    公开(公告)日:2022-11-24

    申请号:US17324183

    申请日:2021-05-19

    Abstract: Disclosed is a semiconductor structure including at least one bipolar junction transistor (BJT), which is uniquely configured so that fabrication of the BJT can be readily integrated with fabrication of complementary metal oxide semiconductor (CMOS) devices on an advanced silicon-on-insulator (SOI) wafer. The BJT has an emitter, a base, and a collector laid out horizontally across an insulator layer and physically separated. Extension regions extend laterally between the emitter and the base and between the base and the collector and are doped to provide junctions between the emitter and the base and between the base and the collector. Gate structures are on the extension regions. The emitter, base, and collector are contacted. Optionally, the gate structures and a substrate below the insulator layer are contacted and can be biased to optimize BJT performance. Optionally, the structure further includes one or more CMOS devices. Also disclosed is a method of forming the structure.

    ASYMMETRIC LATERAL BIPOLAR TRANSISTOR AND METHOD

    公开(公告)号:US20230032080A1

    公开(公告)日:2023-02-02

    申请号:US17388284

    申请日:2021-07-29

    Abstract: Disclosed is a semiconductor structure that includes an asymmetric lateral bipolar junction transistor (BJT). The BJT includes an emitter, a base, a collector extension and a collector arranged side-by-side (i.e., laterally) across a semiconductor layer. The emitter, collector and collector extension have a first type conductivity with the collector extension having a lower conductivity level than either the emitter or the collector. The base has a second type conductivity that is different from the first type conductivity. With such a lateral configuration, the BJT can be easily integrated with CMOS devices on advanced SOI technology platforms. With such an asymmetric configuration and, particularly, given the inclusion of the collector extension but not an emitter extension, the BJT can achieve a relatively high collector-emitter breakdown voltage (Vbr-CEO) without a significant risk of leakage currents at high voltages. Also disclosed are method embodiments for forming such a semiconductor structure.

    Dummy fill with eddy current self-canceling element for inductor component

    公开(公告)号:US11011303B2

    公开(公告)日:2021-05-18

    申请号:US16106162

    申请日:2018-08-21

    Abstract: A dummy fill element for positioning inside an active inductor component of an integrated circuit (IC), the inductor component, the IC and a related method, are disclosed. The active inductor component is configured to convert electrical energy into magnetic energy to reduce parasitic capacitance in an IC. The dummy fill element includes: a first conductive incomplete loop having a first end and a second end, and a second conductive incomplete loop having a first end and a second end. First ends of the first and second conductive incomplete loops are electrically connected, and the second ends of the first and second conductive incomplete loops are electrically connected. In this manner, eddy currents created in each conductive incomplete loop by the magnetic energy cancel at least a portion of each other, allowing for a desired metal fill density and maintaining the inductor's Q-factor.

Patent Agency Ranking