ASYMMETRIC LATERAL BIPOLAR TRANSISTOR AND METHOD

    公开(公告)号:US20230032080A1

    公开(公告)日:2023-02-02

    申请号:US17388284

    申请日:2021-07-29

    Abstract: Disclosed is a semiconductor structure that includes an asymmetric lateral bipolar junction transistor (BJT). The BJT includes an emitter, a base, a collector extension and a collector arranged side-by-side (i.e., laterally) across a semiconductor layer. The emitter, collector and collector extension have a first type conductivity with the collector extension having a lower conductivity level than either the emitter or the collector. The base has a second type conductivity that is different from the first type conductivity. With such a lateral configuration, the BJT can be easily integrated with CMOS devices on advanced SOI technology platforms. With such an asymmetric configuration and, particularly, given the inclusion of the collector extension but not an emitter extension, the BJT can achieve a relatively high collector-emitter breakdown voltage (Vbr-CEO) without a significant risk of leakage currents at high voltages. Also disclosed are method embodiments for forming such a semiconductor structure.

    CRACKSTOP WITH EMBEDDED PASSIVE RADIO FREQUENCY NOISE SUPPRESSOR AND METHOD

    公开(公告)号:US20220406732A1

    公开(公告)日:2022-12-22

    申请号:US17352414

    申请日:2021-06-21

    Abstract: Disclosed is a radio frequency integrated circuit (RFIC) chip that includes an integrated circuit (IC) area and a crackstop laterally surrounding the IC area. The crackstop includes a metallic barrier (or, alternatively, concentric metallic barriers) electrically isolated from the IC area. One or more noise suppressors and, particularly, one or more passive filters (e.g., low pass filter(s), high pass filter(s), band pass filter(s), and/or band stop filter(s)) are integrated into the structure of the metallic barrier(s) to inhibit propagation, through the crackstop, of noise signals within a specific RF range. The specific RF range can be a customer-specified operating parameter. By embedding customized noise suppressor(s) into the crackstop, local signal interference unique to the customer-specified operating parameters can be minimized while also avoiding or at least minimizing the risk of moisture ingress to the IC area. Also disclosed is a method of forming the chip.

    LATERAL BIPOLAR JUNCTION TRANSISTOR AND METHOD

    公开(公告)号:US20220376093A1

    公开(公告)日:2022-11-24

    申请号:US17324183

    申请日:2021-05-19

    Abstract: Disclosed is a semiconductor structure including at least one bipolar junction transistor (BJT), which is uniquely configured so that fabrication of the BJT can be readily integrated with fabrication of complementary metal oxide semiconductor (CMOS) devices on an advanced silicon-on-insulator (SOI) wafer. The BJT has an emitter, a base, and a collector laid out horizontally across an insulator layer and physically separated. Extension regions extend laterally between the emitter and the base and between the base and the collector and are doped to provide junctions between the emitter and the base and between the base and the collector. Gate structures are on the extension regions. The emitter, base, and collector are contacted. Optionally, the gate structures and a substrate below the insulator layer are contacted and can be biased to optimize BJT performance. Optionally, the structure further includes one or more CMOS devices. Also disclosed is a method of forming the structure.

Patent Agency Ranking