摘要:
An injection device (10) includes a carrier inlet (40), a sample inlet (46), waste outlet (44) and a chamber outlet (64) attached to separation column (66). Valves (52, 54, 56) are used to control flow such that sample flows into chamber (22) and is carried into the chamber outlet (42).
摘要:
Variable-volume injection valves include a stator and a rotor. The stator has a first port, a second port, and a contact surface with a groove therein. The first port opens into the stator groove. The rotor has a contact surface with a groove therein. The contact surface of the rotor is urged against the contact surface of the stator such that the rotor groove opposes the stator groove with one end of the rotor groove overlapping the stator groove and the opposite end of the rotor groove overlapping the second port of the stator. The overlapping grooves of the rotor and stator provide a fluidic channel between the first and second ports of the stator. The rotor is movable with respect to the stator in order to vary a length of overlap between their overlapping grooves.
摘要:
A method and apparatus for monitoring and controlling the nano-scale flow rate of fluid in the operating flow path of a HPLC system without relying on a nano-scale sensor in the operating flow path. A main flow sensor is disposed in the main flow path between the pump and a flow-divider. A waste flow sensor is disposed in the waste flow path downstream of the splitter. The output signal of the waste flow sensor is subtracted from the output signal of the main flow sensor in a difference circuit. The difference signal is divided by the output signal from the main flow sensor in a divider circuit. The output of the divider circuit represents an empirical split ratio of the flow-divider and is independent of media composition.
摘要:
Variable-volume injection valves include a stator and a rotor. The stator has a first port, a second port, and a contact surface with a groove therein. The first port opens into the stator groove. The rotor has a contact surface with a groove therein. The contact surface of the rotor is urged against the contact surface of the stator such that the rotor groove opposes the stator groove with one end of the rotor groove overlapping the stator groove and the opposite end of the rotor groove overlapping the second port of the stator. The overlapping grooves of the rotor and stator provide a fluidic channel between the first and second ports of the stator. The rotor is movable with respect to the stator in order to vary a length of overlap between their overlapping grooves.
摘要:
A method and system for measuring the flow rate of a liquid or gas within a flow channel utilizing a centrally located excitation source and a plurality of sensor means. Said excitation means is comprised of a heating element coupled with an alternating current generator. Of the plurality of sensor means, at least one of said sensors is located in a position upstream of the excitation source location, and additionally a second of said plurality of sensors is located in a position downstream of the excitation source. Instantaneous fluid flow rate is calculated utilizing a high gain differential amplifier electrically coupled to said sensors, wherein the convectively induced inductive gradient of the flowing fluid is compared to the symmetrical zero flow induction gradient. Following such a comparison, a voltage signal proportional to the flow of fluid within the channel is derived.
摘要:
An electrokinetic pump can be used to deliver calibrant (“lock mass”) ions to a mass spectrometer for calibration of a mass spectrometry system. Electrokinetically controlled calibrant delivery can help to eliminate the need for the more cumbersome mechanisms that are often used for ion delivery. In addition, electrokinetically controlled calibrant delivery can provide for a more user-friendly system in which a calibrant solution can be packaged into a disposable cartridge. Furthermore, when implemented in a microfluidic format, electrokinetically controlled calibrant delivery can be coupled with an electrokinetically controlled separation system, such as capillary electrophoresis (CE), to allow efficient solid-state switching between analytical and calibrant sprays.
摘要:
A method and apparatus for monitoring and controlling the nano-scale flow rate of fluid in the operating flow path of a HPLC system without relying on a nano-scale sensor in the operating flow path. A main flow sensor is disposed in the main flow path between the pump and a flow-divider. A waste flow sensor is disposed in the waste flow path downstream of the splitter. The output signal of the waste flow sensor is subtracted from the output signal of the main flow sensor in a difference circuit. The difference signal is divided by the output signal from the main flow sensor in a divider circuit. The output of the divider circuit represents an empirical split ratio of the flow-divider and is independent of media composition.
摘要:
A method of analyzing samples includes loading a sufficient quantity of the sample onto a trap column to overload the trap column; heating an analytical column and the trap column to a greater temperature than the analytical column; and pumping a solvent, to the trap column, having a solvent composition profile that, in cooperation with a temperature differential, causes at least some of the components to elute sequentially from the trap column to the analytical column and focus on the analytical column prior to eluting from the analytical column; or optionally: loading a small-molecule sample onto a cooled portion of an analytical column; heating the analytical column; and pumping a solvent, to the heated analytical column, to elute the components from the analytical column. Chromatographic separation includes: a trap column; a separation column; a trap-column heater; a separation-column heater; a solvent pump unit; and a control unit can be used.
摘要:
Described are techniques for fabricating one or more parts of a valve used in a liquid chromatography system. At least one of a rotor and a stator are provided. The rotor is included in the valve and has a first surface facing a stator. The stator is included in the valve and has a second surface facing the rotor. A pattern is formed in at least one of the first surface and the second surface. Forming the pattern includes compressing the at least one surface by applying pressure thereto causing displacement of material to form at least one groove.
摘要:
A method and apparatus for monitoring and controlling the nano-scale flow rate of fluid in the operating flow path of a HPLC system without relying on a nano-scale sensor in the operating flow path. A main flow sensor is disposed in the main flow path between the pump and a flow-divider. A waste flow sensor is disposed in the waste flow path downstream of the splitter. The output signal of the waste flow sensor is subtracted from the output signal of the main flow sensor in a difference circuit. The difference signal is divided by the output signal from the main flow sensor in a divider circuit. The output of the divider circuit represents an empirical split ratio of the flow-divider and is independent of media composition.