Abstract:
A method for providing maintenance instructions to a user is provided. The method obtains a set of data, comprising maintenance instructions, macrolocation data, and object recognition characteristics associated with a target apparatus; guides the user to a macrolocation and a microlocation of the target apparatus, based on the obtained set of data; and provides the maintenance instructions associated with the target apparatus, when the user has reached the macrolocation and the microlocation.
Abstract:
This disclosure is directed to systems and methods for generating outputs based on collected aircraft maneuver data. In one example, a system is configured to collect surveillance data from one or more aircraft. The system is further configured to identify, from the collected surveillance data, aircraft maneuver data indicative of maneuvers of the one or more aircraft. The system is further configured to store the aircraft maneuver data in a data store. The system is further configured to perform one or more analyses of the stored aircraft maneuver data in the data store. The system is further configured to generate an output based on the one or more analyses of the stored aircraft maneuver data.
Abstract:
Embodiments of a flight deck display system deployed onboard an aircraft are provided, as are embodiments of a method carried-out by a flight deck display system. In one embodiment, the flight deck display system includes a cockpit display device and a controller. The controller is configured to: (i) establish the speed trend of the aircraft over a predetermined time period; (ii) generate a primary flight display on the cockpit display device including a speed trend vector graphic representative of the established speed trend; and (iii) alter the appearance of the speed trend vector graphic in a first predetermined manner if a low speed change condition is detected during at least one of aircraft takeoff and landing.
Abstract:
Methods and systems are provided for automatically predicting a surface movement path of an aircraft. The method comprises collecting historical aircraft trajectory data from an empirical aircraft path database. Next, aircraft trajectory paths for a designated airport are mapped based on the historical aircraft trajectory data and map data for the designated airport. Different aircraft trajectory paths are each assigned a weight for the designated airport. A graphical display is then generated for each of the aircraft trajectory paths for the designated airport along with a table that identifies a most probable terminal area and entry node for use by the aircraft at the designated airport.
Abstract:
A stationary object identification system includes memory and a transmitter. The memory has obstacle data stored therein that includes a plurality of parameters associated with each of a plurality of stationary obstacles located at a location, such as an aerodrome. The transmitter is in operable communication with the memory and is configured to generate a plurality of signals. Each of the signals is associated with a different one of the stationary obstacles and has a power level representative of the plurality of parameters associated with the stationary obstacle.
Abstract:
A system and method for alerting a helicopter pilot to an undesirable operating condition during landing operations are provided. Avionics data are supplied from an avionics data source. A controller coupled to receive at least a portion of the avionics data from the avionics data source is configured, upon receipt of the avionics data, to determine when the undesirable operating condition exists and, upon determining that the undesirable operating condition exists, to generate an alert signal that provides notification to the helicopter pilot to increase helicopter airspeed.
Abstract:
A maintenance assistance system and method of operating are provided. The maintenance assistance system may include, but is not limited to, a camera, a speaker, a technician marker, a memory configured to store a location of a plurality of tags and a location of at least one component relative to at least one of the plurality of tags, and a processor communicatively coupled to the camera, the speaker and the memory, the processor configured to receive an indication of one of the components, determine a location of the technician marker relative to the location of the indicated component based upon data from the camera and the location of the indicated component relative to the at least one of the plurality of tags, and output position information to the speaker based upon the determined location of the technician marker relative to the location of the indicated component.
Abstract:
A stationary object identification system includes memory and a transmitter. The memory has obstacle data stored therein that includes a plurality of parameters associated with each of a plurality of stationary obstacles located at a location, such as an aerodrome. The transmitter is in operable communication with the memory and is configured to generate a plurality of signals. Each of the signals is associated with a different one of the stationary obstacles and has a power level representative of the plurality of parameters associated with the stationary obstacle.
Abstract:
A database driven input system and a method for operating the same are provided. The database driven input system, for example, may include, but is not limited to, a memory configured to store a database comprising airport information, a touchscreen display, and a processor communicatively coupled to the touchscreen display and the database system, the processor configured to generate a database driven taxiway input interface comprising a database driven keyboard input interface, the database driven keyboard input interface comprising a smart keyboard configured to prevent invalid input based upon the airport information in the database, display the database driven taxiway input interface on the touchscreen display, receive an input from the touchscreen display, and dynamically update the database driven keyboard input interface based upon the input to the touchscreen display.
Abstract:
A system and method is provided for controlling the speed of an aircraft with a speed brake during landing. The system includes a speed brake control system and a speed brake controller coupled to the speed brake control system for arming the speed brake. An alert generator is coupled to the speed brake controller for generating an alert when the speed brake is not armed.