摘要:
Provided is a semiconductor device capable of reducing a temperature-dependent variation of a current sense ratio and accurately detecting current. In the semiconductor device, at least one of an impurity concentration and a thickness of each semiconductor layer is adjusted such that a value calculated by a following equation is less than a predetermined value: [ ∑ i = 1 n ( R Mi × k Mi ) - ∑ i = 1 n ( R Si × k Si ) ] / ∑ i = 1 n ( R Mi × k Mi ) where a temperature-dependent resistance changing rate of an i-th semiconductor layer (i=1 to n) of the main element domain is RMi; a resistance ratio of the i-th semiconductor layer of the main element domain relative to the entire main element domain is kMi; a temperature-dependent resistance changing rate of the i-th semiconductor layer of the sense element domain is RSi; and a resistance ratio of the i-th semiconductor layer of the sense element domain to the entire sense element domain is kSi.
摘要:
Provided is a semiconductor device capable of reducing a temperature-dependent variation of a current sense ratio and accurately detecting current In the semiconductor device, at least one of an impurity concentration and a thickness of each semiconductor layer is adjusted such that a value calculated by a following equation is less than a predetermined value: [ ∑ i = 1 n ( R Mi × k Mi ) - ∑ i = 1 n ( R Si × k Si ) ] / ∑ i = 1 n ( R Mi × k Mi ) where a temperature-dependent resistance changing rate of an i-th semiconductor layer (i=1 to n) of the main element domain is RMi; a resistance ratio of the i-th semiconductor layer of the main element domain relative to the entire main element domain is kMi; a temperature-dependent resistance changing rate of the i-th semiconductor layer of the sense element domain is RSi; and a resistance ratio of the i-th semiconductor layer of the sense element domain to the entire sense element domain is kSi.
摘要:
Provided is a semiconductor device capable of reducing a temperature-dependent variation of a current sense ratio and accurately detecting current In the semiconductor device, at least one of an impurity concentration and a thickness of each semiconductor layer is adjusted such that a value calculated by a following equation is less than a predetermined value: [ ∑ i = 1 n ( R Mi × k Mi ) - ∑ i = 1 n ( R Si × k Si ) ] / ∑ i = 1 n ( R Mi × k Mi ) where a temperature-dependent resistance changing rate of an i-th semiconductor layer (i=1 to n) of the main element domain is RMi; a resistance ratio of the i-th semiconductor layer of the main element domain relative to the entire main element domain is kMi; a temperature-dependent resistance changing rate of the i-th semiconductor layer of the sense element domain is RSi; and a resistance ratio of the i-th semiconductor layer of the sense element domain to the entire sense element domain is kSi.
摘要:
The invention has an object to provide an insulation gate type semiconductor device and a method for producing the same in which high breakdown voltage and compactness are achieved. The semiconductor device has a gate trench and a P floating region formed in the cell area and has a terminal trench and a P floating region formed in the terminal area. In addition, a terminal trench of three terminal trenches has a structure similar to that of the gate trench, and the other terminal trenches have a structure in which an insulation substance such as oxide silicon is filled. Also, the P floating region 51 is an area formed by implanting impurities from the bottom surface of the gate trench, and the P floating region is an area formed by implanting impurities from the bottom surface of the terminal trench.
摘要:
A semiconductor 100 has a P− body region and an N− drift region in the order from an upper surface side thereof. A gate trench and a terminal trench passing through the P− body region are formed. The respective trenches are surrounded with P diffusion regions at the bottom thereof. The gate trench builds a gate electrode therein. A P−− diffusion region, which is in contact with the end portion in a lengthwise direction of the gate trench and is lower in concentration than the P− body region and the P diffusion region, is formed. The P−− diffusion region is depleted prior to the P diffusion region when the gate voltage is off. The P−− diffusion region serves as a hole supply path to the P diffusion region when the gate voltage is on.
摘要:
The invention is intended to present an insulated gate type semiconductor device that can be manufactured easily and its manufacturing method while realizing both higher withstand voltage design and lower on-resistance design. The semiconductor device comprises N+ source region 31, N+ drain region 11, P− body region 41, and N− drift region 12. By excavating part of the upper side of the semiconductor device, a gate trench 21 is formed. The gate trench 21 incorporates the gate electrode 22. A P floating region 51 is provided beneath the gate trench 21. A further trench 35 differing in depth from the gate trench 21 may be formed, a P floating region 54 being provided beneath the trench 25.
摘要:
A semiconductor 100 has a P− body region and an N− drift region in the order from an upper surface side thereof. A gate trench and a terminal trench passing through the P− body region are formed. The respective trenches are surrounded with P diffusion regions at the bottom thereof. The gate trench builds a gate electrode therein. A P−− diffusion region, which is in contact with the end portion in a lengthwise direction of the gate trench and is lower in concentration than the P− body region and the P diffusion region, is formed. The P−− diffusion region is depleted prior to the P diffusion region when the gate voltage is off. The P−− diffusion region serves as a hole supply path to the P diffusion region when the gate voltage is on.
摘要:
A semiconductor device includes a termination trench surrounding a region in which a plurality of gate trenches is provided; a p-type lower end region being in contact with a lower end of the termination trench; a p-type outer circumference region being in contact with the termination trench from an outer circumferential side and exposed on a surface of the semiconductor device; a plurality of guard ring regions of a p-type provided on an outer circumferential side of the p-type outer circumference region and exposed on the surface; and an n-type outer circumference region separating the p-type outer circumference region from the guard ring regions and separating the guard ring regions from each another.
摘要:
The invention has an object to provide an insulation gate type semiconductor device and a method for producing the same in which high breakdown voltage and compactness are achieved. The semiconductor device has a gate trench and a P floating region formed in the cell area and has a terminal trench and a P floating region formed in the terminal area. In addition, a terminal trench of three terminal trenches has a structure similar to that of the gate trench, and the other terminal trenches have a structure in which an insulation substance such as oxide silicon is filled. Also, the P floating region 51 is an area formed by implanting impurities from the bottom surface of the gate trench, and the P floating region is an area formed by implanting impurities from the bottom surface of the terminal trench.
摘要:
The invention is intended to present an insulated gate type semiconductor device that can be manufactured easily and its manufacturing method while realizing both higher withstand voltage design and lower on-resistance design. The semiconductor device comprises N+ source region 31, N+ drain region 11, P− body region 41, and N− drift region 12. By excavating part of the upper side of the semiconductor device, a gate trench 21 is formed. The gate trench 21 floating region 51 is provided beneath the gate trench 21. A further trench 35 differing in depth from the gate trench 21 may be formed, a P floating region 54 being provided beneath the trench 25.