Abstract:
Methods, devices, and systems for ultrashort pulse laser processing of optically transparent materials are disclosed, with example applications in scribing, marking, welding, and joining. For example, ultrashort laser pulses create scribe features with one pass of the laser beam across the material, with at least one of the scribe features being formed below the surface of the material. Slightly modifying the ultrashort pulse laser processing conditions produces sub-surface marks. When properly arranged, these marks are clearly visible with correctly aligned illumination. Reflective marks may also be formed with control of laser parameters. A transparent material other than glass may be utilized. A method for welding transparent materials uses ultrashort laser pulses to create a bond through localized heating. In some embodiments of transparent material processing, a multifocus beam generator simultaneously forms multiple beam waists spaced depthwise relative to the transparent material, thereby increasing processing speed.
Abstract:
In at least one embodiment time separated pulse pairs are generated, followed by amplification to increase the available peak and/or average power. The pulses are characterized by a time separation that exceeds the input pulse width and with distinct polarization states. The time and polarization discrimination allows easy extraction of the pulses after amplification. In some embodiments polarization maintaining (PM) fibers and/or amplifiers are utilized which provides a compact arrangement. At least one implementation provides for seeding of a solid state amplifier or large core fiber amplifier with time delayed, polarization split pulses, with capability for recombining the time separated pulses at an amplifier output. In various implementations suitable combinations of bulk optics and fibers may be utilized. In some implementations wavelength converted pulse trains are generated. A method and system of the present invention can be used in time domain applications utilizing multiple beam paths, for example spectroscopy.
Abstract:
In at least one embodiment a laser system includes a fiber laser source, a polarization controller and a wavelength converter. The relative power distribution between a pump wavelength and a signal wavelength is controllable using the polarization controller. An optional phase compensator is used to control polarization state of the output laser beam. In various embodiments the relative power distribution among multiple wavelengths may be controlled over a range of at least about 100:1.