Abstract:
Embodiments relate to xMR sensors having very high shape anisotropy. Embodiments also relate to novel structuring processes of xMR stacks to achieve very high shape anisotropies without chemically affecting the performance relevant magnetic field sensitive layer system while also providing comparatively uniform structure widths over a wafer, down to about 100 nm in embodiments. Embodiments can also provide xMR stacks having side walls of the performance relevant free layer system that are smooth and/or of a defined lateral geometry which is important for achieving a homogeneous magnetic behavior over the wafer.
Abstract:
Embodiments relate to xMR sensors having very high shape anisotropy. Embodiments also relate to novel structuring processes of xMR stacks to achieve very high shape anisotropies without chemically affecting the performance relevant magnetic field sensitive layer system while also providing comparatively uniform structure widths over a wafer, down to about 100 nm in embodiments. Embodiments can also provide xMR stacks having side walls of the performance relevant free layer system that are smooth and/or of a defined lateral geometry which is important for achieving a homogeneous magnetic behavior over the wafer.
Abstract:
A limiting amplifier includes a multiplicity of cascaded amplifier stages for amplifying an input signal for the amplifier. A further amplifier stage is supplied with a reference signal. On the basis of an output signal from the further amplifier stage, a control signal for adjusting a gain of at least one of the cascaded amplifier stages is produced.
Abstract:
Sensor and method for determining operating states associated with one or more tires. The operating state of the tire can be determined based on one or more measures environmental conditions of the tire(s). For example, a controller can be configured to determine a change in one or more environmental conditions, including determining, for example, a rate-of-change value, a variance value, a standard deviation, or the like. The rate-of-change, variance, and/or standard deviation values can be compared to one or more threshold values to determine the operating state(s) associated with the tire(s). The environmental condition can include, for example, acceleration of the tire, pressure of the tire, and/or temperature of the tire. The operating state can be, for example, a filling state indicative of the tire being inflating, and/or a drive state indicative of the tire rotating about its axle.
Abstract:
Radio frequency devices and methods are provided where a network like a filter network or impedance matching network comprises a series connection of at least two inductors.
Abstract:
Embodiments relate to a Radio Frequency IDentification (RFID)-tag, a Tire Pressure Monitoring System (TPMS) device, a tire, a receiver device and a method for providing information related to identification of a tire. The RFID-tag is configured to provide information related to the tire identification and it is configured to be powered by the TPMS device. The RFID-tag comprises a memory module configured to store the information related to the tire identification and a transmitter module configured to transmit the information related to the tire identification to a receiver device of a vehicle or a service station. The TPMS device comprises a coupling element configured to provide Radio Frequency power to the RFID-tag, for providing information related to tire identification.
Abstract:
Embodiments relate to a Radio Frequency IDentification (RFID)-tag, a Tire Pressure Monitoring System (TPMS) device, a tire, a receiver device and a method for providing information related to identification of a tire. The RFID-tag is configured to provide information related to the tire identification and it is configured to be powered by the TPMS device. The RFID-tag comprises a memory module configured to store the information related to the tire identification and a transmitter module configured to transmit the information related to the tire identification to a receiver device of a vehicle or a service station. The TPMS device comprises a coupling element configured to provide Radio Frequency power to the RFID-tag, for providing information related to tire identification.
Abstract:
Sensor and method for determining operating states associated with one or more tires. The operating state of the tire can be determined based on one or more measures environmental conditions of the tire(s). For example, a controller can be configured to determine a change in one or more environmental conditions, including determining, for example, a rate-of-change value, a variance value, a standard deviation, or the like. The rate-of-change, variance, and/or standard deviation values can be compared to one or more threshold values to determine the operating state(s) associated with the tire(s). The environmental condition can include, for example, acceleration of the tire, pressure of the tire, and/or temperature of the tire. The operating state can be, for example, a filling state indicative of the tire being inflating, and/or a drive state indicative of the tire rotating about its axle.
Abstract:
Sensor and method for determining operating states associated with one or more tires. The operating state of the tire can be determined based on one or more measures environmental conditions of the tire(s). For example, a controller can be configured to determine a change in one or more environmental conditions, including determining, for example, a rate-of-change value, a variance value, a standard deviation, or the like. The rate-of-change, variance, and/or standard deviation values can be compared to one or more threshold values to determine the operating state(s) associated with the tire(s). The environmental condition can include, for example, acceleration of the tire, pressure of the tire, and/or temperature of the tire. The operating state can be, for example, a filling state indicative of the tire being inflating, and/or a drive state indicative of the tire rotating about its axle.
Abstract:
Embodiments relate to a Radio Frequency IDentification (RFID)-tag, a Tire Pressure Monitoring System (TPMS) device, a tire, a receiver device and a method for providing information related to identification of a tire. The RFID-tag is configured to provide information related to the tire identification and it is configured to be powered by the TPMS device. The RFID-tag comprises a memory module configured to store the information related to the tire identification and a transmitter module configured to transmit the information related to the tire identification to a receiver device of a vehicle or a service station. The TPMS device comprises a coupling element configured to provide Radio Frequency power to the RFID-tag, for providing information related to tire identification.