Abstract:
Example methods and apparatus to facilitate dynamic core selection are disclosed. An example apparatus includes a first processor core of a first type; a second processor core of a second type different from the first type; and software to: access a user-supplied hint indicative of a user preference to execute program code on the first processor core, the user-supplied hint including a user-defined attribute of the program code; monitor performance of the program code on the first processor core; determine, based on the user-defined attribute of the program code, a predicted performance of the program code on the second processor core is better than the performance of the program code on the first processor core; and ignore the user preference by migrating the program code from the first processor core for execution on the second processor core.
Abstract:
Dynamically switching cores on a heterogeneous multi-core processing system may be performed by executing program code on a first processing core. Power up of a second processing core may be signaled. A first performance metric of the first processing core executing the program code may be collected. When the first performance metric is better than a previously determined core performance metric, power down of the second processing core may be signaled and execution of the program code may be continued on the first processing core. When the first performance metric is not better than the previously determined core performance metric, execution of the program code may be switched from the first processing core to the second processing core.
Abstract:
Dynamically switching cores on a heterogeneous multi-core processing system may be performed by executing program code on a first processing core. Power up of a second processing core may be signaled. A first performance metric of the first processing core executing the program code may be collected. When the first performance metric is better than a previously determined core performance metric, power down of the second processing core may be signaled and execution of the program code may be continued on the first processing core. When the first performance metric is not better than the previously determined core performance metric, execution of the program code may be switched from the first processing core to the second processing core.
Abstract:
Dynamically switching cores on a heterogeneous multi-core processing system may be performed by executing program code on a first processing core. Power up of a second processing core may be signaled. A first performance metric of the first processing core executing the program code may be collected. When the first performance metric is better than a previously determined core performance metric, power down of the second processing core may be signaled and execution of the program code may be continued on the first processing core. When the first performance metric is not better than the previously determined core performance metric, execution of the program code may be switched from the first processing core to the second processing core.
Abstract:
An apparatus and method is described herein for conditionally committing and/or speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
Abstract:
Dynamically switching cores on a heterogeneous multi-core processing system may be performed by executing program code on a first processing core. Power up of a second processing core may be signaled. A first performance metric of the first processing core executing the program code may be collected. When the first performance metric is better than a previously determined core performance metric, power down of the second processing core may be signaled and execution of the program code may be continued on the first processing core. When the first performance metric is not better than the previously determined core performance metric, execution of the program code may be switched from the first processing core to the second processing core.
Abstract:
Dynamically switching cores on a heterogeneous multi-core processing system may be performed by executing program code on a first processing core. Power up of a second processing core may be signaled. A first performance metric of the first processing core executing the program code may be collected. When the first performance metric is better than a previously determined core performance metric, power down of the second processing core may be signaled and execution of the program code may be continued on the first processing core. When the first performance metric is not better than the previously determined core performance metric, execution of the program code may be switched from the first processing core to the second processing core.
Abstract:
An apparatus and method is described herein for conditionally committing and/or speculative checkpointing transactions, which potentially results in dynamic resizing of transactions. During dynamic optimization of binary code, transactions are inserted to provide memory ordering safeguards, which enables a dynamic optimizer to more aggressively optimize code. And the conditional commit enables efficient execution of the dynamic optimization code, while attempting to prevent transactions from running out of hardware resources. While the speculative checkpoints enable quick and efficient recovery upon abort of a transaction. Processor hardware is adapted to support dynamic resizing of the transactions, such as including decoders that recognize a conditional commit instruction, a speculative checkpoint instruction, or both. And processor hardware is further adapted to perform operations to support conditional commit or speculative checkpointing in response to decoding such instructions.
Abstract:
Example methods and apparatus to facilitate dynamic core selection are disclosed. An example apparatus includes a first processor core of a first type; a second processor core of a second type different from the first type; and software to: access a user-supplied hint indicative of a user preference to execute program code on the first processor core, the user-supplied hint including a user-defined attribute of the program code; monitor performance of the program code on the first processor core; determine, based on the user-defined attribute of the program code, a predicted performance of the program code on the second processor core is better than the performance of the program code on the first processor core; and ignore the user preference by migrating the program code from the first processor core for execution on the second processor core
Abstract:
Dynamically switching cores on a heterogeneous multi-core processing system may be performed by executing program code on a first processing core. Power up of a second processing core may be signaled. A first performance metric of the first processing core executing the program code may be collected. When the first performance metric is better than a previously determined core performance metric, power down of the second processing core may be signaled and execution of the program code may be continued on the first processing core. When the first performance metric is not better than the previously determined core performance metric, execution of the program code may be switched from the first processing core to the second processing core.