FINE-GRAIN INTEGRATION OF GROUP III-V DEVICES

    公开(公告)号:US20250112210A1

    公开(公告)日:2025-04-03

    申请号:US18478932

    申请日:2023-09-29

    Abstract: Methods of selectively transferring integrated circuit (IC) components between substrates, and devices and systems formed using the same, are disclosed herein. In one embodiment, a first substrate with a release layer and a layer of IC components over the release layer is received, and a second substrate with one or more adhesive areas is received. The layer of IC components may include one or more transistors that contain one or more group III-V materials. The first substrate is partially bonded to the second substrate, such that a subset of IC components on the first substrate are bonded to the adhesive areas on the second substrate. The first substrate is then separated from the second substrate, and the subset of IC components bonded to the second substrate are separated from the first substrate and remain on the second substrate.

    Crimped mm-wave waveguide tap connector

    公开(公告)号:US10921524B2

    公开(公告)日:2021-02-16

    申请号:US15859477

    申请日:2017-12-30

    Abstract: Embodiments include a sensor node, a method of forming the sensor node, and a vehicle with a communication system that includes sensor nodes. A sensor node includes an interconnect with an input connector, an output connector, and an opening on one or more sidewalls. The sensor node also includes a package with one or more sidewalls, a top surface, and a bottom surface, where at least one of the sidewalls of the package is disposed on the opening of interconnect. The sensor node may have a control circuit on the package, a first millimeter-wave launcher on the package, and a sensor coupled to the control circuit, where the sensor is coupled to the control circuit with an electrical cable. The sensor node may include that at least one of the sidewalls of the package is crimped by the opening and adjacent and co-planar to an inner wall of the interconnect.

    Waveguide communication with increased link data rate

    公开(公告)号:US10680788B2

    公开(公告)日:2020-06-09

    申请号:US16127800

    申请日:2018-09-11

    Abstract: Embodiments of the present disclosure may relate to a transceiver to transmit and receive concurrently radio frequency (RF) signals via a dielectric waveguide. In embodiments, the transceiver may include a transmitter to transmit to a paired transceiver a channelized radio frequency (RF) transmit signal via the dielectric waveguide. A receiver may receive from the paired transceiver a channelized RF receive signal via the dielectric waveguide. In embodiments, the channelized RF receive signal may include an echo of the channelized RF transmit signal. The transceiver may further include an echo suppression circuit to suppress from the channelized RF receive signal the echo of the channelized RF transmit signal. In some embodiments, the channelized RF transmit signal and the channelized RF receive signal may be within a frequency range of approximately 30 gigahertz (GHz) to approximately 1 terahertz (THz), and the transceiver may provide full-duplex millimeter-wave communication.

Patent Agency Ranking