Abstract:
Technologies for managing assets of a data center include a unmanned aerial vehicle (UAV) communicatively coupled to a remote computing device. The UAV is configured to navigate throughout a data center and capture data center mapping information during the navigation usable to generate a three-dimensional (3D) model of the data center. The UAV is further configured to transmit the captured data center mapping information to a remote computing device. Accordingly, the UAV can receive instructions from a remote computing device that define a type of task to be performed by the UAV in the data center and perform such a task (e.g., a data center map update task, an asset inventory task, a maintenance task, a visual inspection task, etc.) based on the received task instructions. Other embodiments are described and claimed herein.
Abstract:
Technologies for managing assets of a data center include a unmanned aerial vehicle (UAV) communicatively coupled to a remote computing device. The UAV is configured to navigate throughout a data center and capture data center mapping information during the navigation usable to generate a three-dimensional (3D) model of the data center. The UAV is further configured to transmit the captured data center mapping information to a remote computing device. Accordingly, the UAV can receive instructions from a remote computing device that define a type of task to be performed by the UAV in the data center and perform such a task (e.g., a data center map update task, an asset inventory task, a maintenance task, a visual inspection task, etc.) based on the received task instructions. Other embodiments are described and claimed herein.
Abstract:
Techniques related to balancing audio for mobile devices are discussed. Such techniques may include detecting a speaker of the device is at least partially obstructed, determining an audio output from the device is impeded due to the speaker being at least partially obstructed, and increasing an output from the speaker and/or an alternative speaker based on the audio output from the device being impeded.
Abstract:
Various systems and methods for providing contextual information to a user while the user is wearing headphones are described herein. A system for providing contextual information while wearing headphones comprises an event detector module to detect an event external and proximate to a user device, the user device communicatively coupled to headphones worn by a user, the headphones producing sound at a first volume; a notification decision module to determine whether to notify the user of the event; and a notification module to notify the user of the event based on the determination.
Abstract:
Disclosed herein are systems and methods for selectively disabling operation of hardware components based on network changes. In some embodiments, the hardware component may cause a platform to perform network discovery to receive first network discovery data, cause the platform to perform network discovery to receive second network discovery data, determine that the differences between the first and second data exceed a network change threshold, and in response to the determination, cause disablement of operation of one or more functions of the hardware component. Other embodiments may be disclosed and/or claimed.
Abstract:
Disclosed herein are systems and methods for selectively disabling operation of hardware components based on network changes. In some embodiments, the hardware component may cause a platform to perform network discovery to receive first network discovery data, cause the platform to perform network discovery to receive second network discovery data, determine that the differences between the first and second data exceed a network change threshold, and in response to the determination, cause disablement of operation of one or more functions of the hardware component. Other embodiments may be disclosed and/or claimed.
Abstract:
Techniques related to balancing audio for mobile devices are discussed. Such techniques may include detecting a speaker of the device is at least partially obstructed, determining an audio output from the device is impeded due to the speaker being at least partially obstructed, and increasing an output from the speaker and/or an alternative speaker based on the audio output from the device being impeded.
Abstract:
Technologies for data center power management include a number of computing nodes in communication over a network. Each computing node establishes a firmware environment that monitors power consumption of the computing node and if the power consumption exceeds an optimal level broadcasts a request to offload tasks to the other nodes. The firmware environment of a receiving computing node traps the request and determines power requirements and/or compute requirements for the tasks based on the request. The firmware environment determines whether to accept the offloaded task based on the requirements and available resources of the computing node. If accepted, the requesting computing node offloads one or more tasks to the receiving nodes. The firmware environment may be established by a manageability engine of the computing node. Power consumption may be monitored on a per-component basis. Compute requirements may include processor requirements or other requirements. Other embodiments are described and claimed.
Abstract:
A method and apparatus for assigning tasks to processor cores, based on usage history, to have tasks executed at the highest frequency with the lowest power consumption are described. In one embodiment, the apparatus comprises processor cores, an interconnect coupled to the processor cores, at least one memory module coupled to the interconnect, and a task assigning module to assign a first task, based the usage history, to one processor core for execution at maximum frequency with minimum power usage in comparison to other processor cores of the plurality, the usage history being based on monitored core temperature, frequency and power usage for a first set of tasks previously executed by the plurality of processor cores.
Abstract:
Technologies for managing assets of a data center include a unmanned aerial vehicle (UAV) communicatively coupled to a remote computing device. The UAV is configured to navigate throughout a data center and capture data center mapping information during the navigation usable to generate a three-dimensional (3D) model of the data center. The UAV is further configured to transmit the captured data center mapping information to a remote computing device. Accordingly, the UAV can receive instructions from a remote computing device that define a type of task to be performed by the UAV in the data center and perform such a task (e.g., a data center map update task, an asset inventory task, a maintenance task, a visual inspection task, etc.) based on the received task instructions. Other embodiments are described and claimed herein.