Abstract:
A semiconductor device includes a gate, a first electrode, a first insulating layer, an active layer, an etching stop layer, a second insulating layer, a source, a drain and a second electrode. The first insulating layer covers the gate and the first electrode. The active layer and the etching stop layer are disposed on the first insulating layer above the gate and the first electrode respectively. The second insulating layer covers the active layer and the etching stop layer and has a first opening and a second opening exposing the active layer and a third opening exposing the etching stop layer. The source and the drain are disposed on the second insulating layer and contact with the active layer through the first opening and the second opening respectively. The second electrode is located on the second insulating layer and contacts with the etching stop layer through the third opening.
Abstract:
A semiconductor device is provided to include a flexible substrate, a barrier layer, a heat insulating layer, a device layer, a dielectric material later and a stress absorbing layer. The barrier layer is disposed on the flexible substrate. The heat insulating layer is disposed on the barrier layer, wherein the heat insulating layer has a thermal conductivity of less than 20 W/mK. The device layer is disposed on the heat insulating layer. The dielectric material layer is disposed on the device layer, and the dielectric material layer and the heat insulating layer include at least one trench. The stress absorbing layer is disposed on the dielectric material layer, and the stress absorbing layer fills into the at least one trench.
Abstract:
A thin film transistor including a flexible substrate, a semiconductor layer, a first gate, and a first gate dielectric layer is provided. The semiconductor layer is located on the flexible substrate. The first gate is located on the flexible substrate and corresponds to a portion of the semiconductor layer. The first gate dielectric layer is located between the first gate and the semiconductor layer. The first gate dielectric layer is in contact with the semiconductor layer, and the hydrogen atom concentration of the first gate dielectric layer is less than 6.5×1020 atoms/cm3. A method of manufacturing the thin film transistor is also provided.
Abstract:
In one embodiment, a flexible device is provided. The flexible device may include a flexible substrate, a buffer layer, a light reflective layer, and a device layer. The buffer layer is located on the flexible substrate. The light reflective layer is located on the flexible substrate, wherein the light reflective layer has a reflection wavelength of 200 nm˜1100 nm, a reflection ratio of greater than 80%, and a stress direction of the light reflective layer is the same as a stress direction of the flexible substrate. The device layer is located on the light reflective layer and the buffer layer.
Abstract:
In one embodiment, a flexible device is provided. The flexible device may include a flexible substrate, a buffer layer, a light reflective layer, and a device layer. The buffer layer is located on the flexible substrate. The light reflective layer is located on the flexible substrate, wherein the light reflective layer has a reflection wavelength of 200 nm˜1100 nm, a reflection ratio of greater than 80%, and a stress direction of the light reflective layer is the same as a stress direction of the flexible substrate. The device layer is located on the light reflective layer and the buffer layer.
Abstract:
A semiconductor device is provided to include a flexible substrate, a barrier layer, a heat insulating layer, a device layer, a dielectric material later and a stress absorbing layer. The barrier layer is disposed on the flexible substrate. The heat insulating layer is disposed on the barrier layer, wherein the heat insulating layer has a thermal conductivity of less than 20 W/mK. The device layer is disposed on the heat insulating layer. The dielectric material layer is disposed on the device layer, and the dielectric material layer and the heat insulating layer include at least one trench. The stress absorbing layer is disposed on the dielectric material layer, and the stress absorbing layer fills into the at least one trench.
Abstract:
A semiconductor device includes a gate, a first electrode, a first insulating layer, an active layer, an etching stop layer, a second insulating layer, a source, a drain and a second electrode. The first insulating layer covers the gate and the first electrode. The active layer and the etching stop layer are disposed on the first insulating layer above the gate and the first electrode respectively. The second insulating layer covers the active layer and the etching stop layer and has a first opening and a second opening exposing the active layer and a third opening exposing the etching stop layer. The source and the drain are disposed on the second insulating layer and contact with the active layer through the first opening and the second opening respectively. The second electrode is located on the second insulating layer and contacts with the etching stop layer through the third opening.