Abstract:
In accordance with an embodiment, a sensor includes: a signal source with a first signal source terminal and a second signal source terminal; a bridge circuit connected to the first and second signal source terminals, the bridge circuit including: a first branch including: a first reference impedance element; and a first sensor impedance element configured to transduce a magnitude to be measured into a first impedance-related parameter; and a second branch including: a second reference impedance element; and a second sensor impedance element configured to transduce the magnitude to be measured into a second sensor impedance-related parameter.
Abstract:
Examples of the present disclosure provide an electronic device in a package, the electronic device comprising a first circuit having a temperature sensitive behavior and a second circuit being switchable between a first operating mode and at least one second operating mode. A power consumption of the second circuit in the first operating mode is higher than a power consumption of the second circuit in the second operating mode. The electronic device comprises a controller configured to switch the second circuit into the first operating mode during a first time interval and into the second operating mode during a second time interval. The controller is further configured to cause an additional power consumption in the electronic device during the second time interval to reduce or compensate a difference between an overall power consumption of the electronic device during the first time interval and the second time interval.
Abstract:
In accordance with an embodiment, an interface circuit includes a variable voltage bias generator coupled to a transducer, and a measurement circuit coupled to an output of the transducer. The measurement circuit is configured to measure an output amplitude of the transducer. The interface circuit further includes a calibration controller coupled to the bias generator and the measurement circuit, and is configured to set a sensitivity of the transducer and interface circuit during an auto-calibration sequence.
Abstract:
An apparatus for calibrating a pressure sensing device having a pressure sensor and a temperature compensation device includes: a chamber for applying a variable temperature and a variable pressure to the pressure sensing device; a temperature regulation device for regulating the temperature in the chamber designed such that the temperature in the chamber respectively increases in a strictly monotonous manner or falls in a strictly monotonous manner during one or more time intervals; a pressure regulation device for regulating the pressure in the chamber designed such that the pressure in the chamber respectively monotonously increases or respectively monotonously falls in at least one of the time intervals during a plurality of sub-intervals of the one-time interval; a reference pressure sensor for sensing the pressure in the chamber during the time interval(s); and a data record generation device for generating corresponding data records.
Abstract:
Examples of the present disclosure provide an electronic device in a package, the electronic device comprising a first circuit having a temperature sensitive behavior and a second circuit being switchable between a first operating mode and at least one second operating mode. A power consumption of the second circuit in the first operating mode is higher than a power consumption of the second circuit in the second operating mode. The electronic device comprises a controller configured to switch the second circuit into the first operating mode during a first time interval and into the second operating mode during a second time interval. The controller is further configured to cause an additional power consumption in the electronic device during the second time interval to reduce or compensate a difference between an overall power consumption of the electronic device during the first time interval and the second time interval.
Abstract:
In accordance with an embodiment, a device includes an interface configured for obtaining at least one measurement signal from a temperature sensor. In a first time interval the at least one measurement signal comprises information about a temperature-dependent voltage difference between a first temperature-dependent voltage at a first diode of the temperature sensor and a second temperature-dependent voltage at a second diode of the temperature sensor. In a second time interval the at least one measurement signal comprises information about a measurement value of a temperature-dependent voltage at a temperature-dependent electrical component of the temperature sensor.
Abstract:
According to an embodiment, a sensor circuit includes a sigma-delta analog to digital converter (ADC), a dithered clock coupled to the sigma-delta ADC, and a supply voltage circuit coupled to the sigma-delta ADC. The sigma-delta ADC is configured to be coupled to a low frequency transducer, and the dithered clock is configured to control of the sigma-delta ADC based on a dithered clock signal.
Abstract:
According to an embodiment, a transducer system includes a transducing element and a symmetry detection circuit. The transducing element includes a signal plate, a first sensing plate, and a second sensing plate. The symmetry detection circuit is coupled to a differential output of the transducer element and is configured to output an error signal based on asymmetry in the differential output.
Abstract:
An embodiment includes a method of performing a measurement using a micro-electro-mechanical system (MEMS) device that includes a plurality of MEMS sensors having different resonant frequencies. The method includes applying an excitation signal to a first port of the MEMS device such that each of the plurality of the MEMS sensors is stimulated by the excitation signal. The method further includes measuring a signal at a second port of the MEMS device and determining a measured value based on the measuring the signal.
Abstract:
A microphone or a microphone sensor system operates with a sensor interface that receives a supply voltage at a supply terminal. The sensor interface detects a command at the supply terminal based on a change in the supply voltage and communicates the command or data related to the command to a component of the sensor system. The supply terminal is a bidirectional terminal that further communicates data related to the sensor system via the supply terminal.