Abstract:
An interconnect structure is disclosed. The interconnect structure includes a first metal interconnect in a bottom dielectric layer, a via that extends through a top dielectric layer, a metal plate, an intermediate dielectric layer, and an etch stop layer, and a metal in the via to extend through the top dielectric layer, the metal plate, the intermediate dielectric layer and the etch stop layer to the top surface of the first metal interconnect. The metal plate is coupled to an MIM capacitor that is parallel to the via. The second metal interconnect is on top of the metal in the via.
Abstract:
Described are apparatuses and methods for improving resistive memory energy efficiency and reliability. An apparatus may include a resistive memory cell coupled to a conductive line. The apparatus may further include a driver coupled to the conductive line to drive current for the resistive memory cell during a write operation. The resistance of the driver may be selectively increased for two or more time periods during the write operation for detecting a voltage change on the conductive line. The current for the write operation may be turned off when the voltage change is detected to improve resistive memory energy efficiency and reliability.
Abstract:
An interconnect structure is disclosed. The interconnect structure includes a first metal interconnect in a bottom dielectric layer, a via that extends through a top dielectric layer, a metal plate, an intermediate dielectric layer, and an etch stop layer, and a metal in the via to extend through the top dielectric layer, the metal plate, the intermediate dielectric layer and the etch stop layer to the top surface of the first metal interconnect. The metal plate is coupled to an MIM capacitor that is parallel to the via. The second metal interconnect is on top of the metal in the via.
Abstract:
Described are apparatuses and methods for improving resistive memory energy efficiency and reliability. An apparatus may include a resistive memory cell coupled to a conductive line. The apparatus may further include a driver coupled to the conductive line to drive current for the resistive memory cell during a write operation. The resistance of the driver may be selectively increased for two or more time periods during the write operation for detecting a voltage change on the conductive line. The current for the write operation may be turned off when the voltage change is detected to improve resistive memory energy efficiency and reliability.