Abstract:
A memory structure having at least substantially aligned floating and control gates. Such a memory structure can include a control gate material disposed between a first insulator layer and a second insulator layer, a floating gate material disposed between the first insulator layer and the second insulator layer and at least substantially aligned with the control gate material, the floating gate material including a metal region, and an interpoly dielectric (IPD) layer disposed between the control gate material and the floating gate material such that the IPD layer electrically isolates the control gate material from the floating gate material.
Abstract:
A non-volatile memory device and a method for forming the non-volatile memory device are disclosed. The memory device utilizes a local buried channel dielectric in a NAND string that reduces bulk channel leakage at the edge of the NAND string where the electric field gradient along the direction of the string pillar is at or near a maximum during programming operations. The memory device comprises a channel that is coupled at one end to a bitline and at the other end to a source. A select gate is formed at the end of the channel coupled to the bitline to selectively control conduction between the bitline and the channel. At least one non-volatile memory cell is formed along the length of the channel between the select gate and the second end of the channel. A local dielectric region is formed within the channel at the first end of the channel.
Abstract:
A 3D NAND memory structure having improved process margin and enhanced performance is provided. Such a memory structure can include a control gate material and a floating gate material disposed between a first insulating layer and a second insulating layer, a metal layer disposed between the control gate material and the floating gate material, an interpoly dielectric (IPD) layer disposed between the metal layer and the control gate material such that the IPD layer electrically isolates the control gate material from the floating gate material, and a tunnel dielectric material coupled to the floating gate material opposite the control gate material.
Abstract:
A non-volatile memory device and a method for forming the non-volatile memory device are disclosed. The memory device utilizes a local buried channel dielectric in a NAND string that reduces bulk channel leakage at the edge of the NAND string where the electric field gradient along the direction of the string pillar is at or near a maximum during programming operations. The memory device comprises a channel that is coupled at one end to a bitline and at the other end to a source. A select gate is formed at the end of the channel coupled to the bitline to selectively control conduction between the bitline and the channel. At least one non-volatile memory cell is formed along the length of the channel between the select gate and the second end of the channel. A local dielectric region is formed within the channel at the first end of the channel.
Abstract:
A multitier stack of memory cells having an aluminum oxide (AlOx) layer as a noble HiK layer to provide etch stop selectivity. Each tier of the stack includes a memory cell device. The circuit includes a source gate select polycrystalline (SGS poly) layer adjacent the multitier stack of memory cells, wherein the SGS poly layer is to provide a gate select signal for the memory cells of the multitier stack. The circuit also includes a conductive source layer to provide a source conductor for a channel for the tiers of the stack. The AlOx layer is disposed between the source layer and the SGS poly layer and provides both dry etch selectivity and wet etch selectivity for creating a channel to electrically couple the memory cells to the source layer.
Abstract:
A non-volatile memory device and a method for forming the non-volatile memory device are disclosed. The memory device utilizes a local buried channel dielectric in a NAND string that reduces bulk channel leakage at the edge of the NAND string where the electric field gradient along the direction of the string pillar is at or near a maximum during programming operations. The memory device comprises a channel that is coupled at one end to a bitline and at the other end to a source. A select gate is formed at the end of the channel coupled to the bitline to selectively control conduction between the bitline and the channel. At least one non-volatile memory cell is formed along the length of the channel between the select gate and the second end of the channel. A local dielectric region is formed within the channel at the first end of the channel.