Abstract:
Embodiments of the present disclosure describe techniques and configurations for controlling current in a non-volatile random access memory (NVRAM) device. In an embodiment, the NVRAM device may include a plurality of memory cells coupled to a plurality of bit lines forming a bit line node with parasitic capacitance. Each memory cell may comprise a switch device with a required level of a holding current to maintain an on-state of the cell. A voltage supply circuitry and a controller may be coupled with the NVRAM device. The controller may control the circuitry to provide a current pulse that keeps a memory cell in on-state. The pulse may comprise a profile that changes over time from a set point to the holding current level, in response to a discharge of the bit line node capacitance through the memory cell after the set point is achieved. Other embodiments may be described and/or claimed.
Abstract:
The present disclosure relates to phase change memory current. An apparatus includes a memory controller including a word line (WL) control module and a bit line (BL) control module, the memory controller is to initiate selection of a memory cell. The apparatus further includes a mitigation module to configure a first line selection logic to reduce a transient energy dissipation of the memory cell, the transient energy related to selecting the memory cell.
Abstract:
A read technique for both SLC (single level cell) and MLC (multi-level cell) cross-point memory can mitigate drift-related errors with minimal or no drift tracking. In one example, a read at a higher magnitude voltage is applied first, which causes the drift for cells in a lower threshold voltage state to be reset. In one example, the read at the first voltage can be a full float read to minimize disturb. A second read can then be performed at a lower voltage without the need to adjust the read voltage due to drift.
Abstract:
Technology for verifying cell programming for a phase change memory array is disclosed. In an example, a method may include sending a reset pulse to a phase change memory cell. The method may further include sensing a threshold voltage of the phase change memory cell in response to applying first and second verify voltages across the phase change memory cell, where the second verify voltage is lower than the first verify voltage. The method may also include determining whether the threshold voltage of the phase change memory cell was below the first or second verify voltages.
Abstract:
The present disclosure relates to phase change memory control. An apparatus includes a memory controller. The memory controller includes a word line (WL) control module and a bit line (BL) control module. The memory controller is to determine a WL address based, at least in part, on a received memory address. The memory controller is further to determine a BL address. The apparatus further includes a parameter selection module to select a value of a control parameter based, at least in part, on at least one of the WL address and/or the BL address.
Abstract:
The present disclosure relates to phase change memory control. An apparatus includes a memory controller. The memory controller includes a word line (WL) control module and a bit line (BL) control module. The memory controller is to determine a WL address based, at least in part, on a received memory address. The memory controller is further to determine a BL address. The apparatus further includes a parameter selection module to select a value of a control parameter based, at least in part, on at least one of the WL address and/or the BL address.
Abstract:
The present disclosure relates to phase change memory control. An apparatus includes a memory controller. The memory controller includes a word line (WL) control module and a bit line (BL) control module. The memory controller is to determine a WL address based, at least in part, on a received memory address. The memory controller is further to determine a BL address. The apparatus further includes a parameter selection module to select a value of a control parameter based, at least in part, on at least one of the WL address and/or the BL address.
Abstract:
Embodiments of the present disclosure describe techniques and configurations for controlling current in a non-volatile random access memory (NVRAM) device. In an embodiment, the NVRAM device may include a plurality of memory cells coupled to a plurality of bit lines forming a bit line node with parasitic capacitance. Each memory cell may comprise a switch device with a required level of a holding current to maintain an on-state of the cell. A voltage supply circuitry and a controller may be coupled with the NVRAM device. The controller may control the circuitry to provide a current pulse that keeps a memory cell in on-state. The pulse may comprise a profile that changes over time from a set point to the holding current level, in response to a discharge of the bit line node capacitance through the memory cell after the set point is achieved. Other embodiments may be described and/or claimed.
Abstract:
Technology for verifying cell programming for a phase change memory array is disclosed. In an example, a method may include sending a reset pulse to a phase change memory cell. The method may further include sensing a threshold voltage of the phase change memory cell in response to applying first and second verify voltages across the phase change memory cell, where the second verify voltage is lower than the first verify voltage. The method may also include determining whether the threshold voltage of the phase change memory cell was below the first or second verify voltages.
Abstract:
The present disclosure relates to phase change memory current. An apparatus includes a memory controller including a word line (WL) control module and a bit line (BL) control module, the memory controller is to initiate selection of a memory cell. The apparatus further includes a mitigation module to configure a first line selection logic to reduce a transient energy dissipation of the memory cell, the transient energy related to selecting the memory cell.