Abstract:
A multistage read can dynamically change wordline capacitance as a function of threshold voltage of a memory cell being read. The multistage read can reduce current spikes and reduce the heating up of a memory cell during a read. A memory device includes a global wordline driver to connect a wordline of a selected memory cell to the sensing circuit, and a local wordline driver local to the memory cell. After the wordline is charged to a read voltage, control logic can selectively enable and disable a portion or all of the global wordline driver and the local wordline driver in conjunction with applying different discrete voltage levels to the bitline to perform a multistage read.
Abstract:
The present disclosure relates to phase change memory current. An apparatus includes a memory controller including a word line (WL) control module and a bit line (BL) control module, the memory controller is to initiate selection of a memory cell. The apparatus further includes a mitigation module to configure a first line selection logic to reduce a transient energy dissipation of the memory cell, the transient energy related to selecting the memory cell.
Abstract:
A system and technique is disclosed for writing data in a cross-point memory. The state of one or more memory cells of the cross-point memory are sensed and then are continued to be selected and left on. It is then determined which of the one or more memory cells are to change state based on incoming user data that is to be written into the one or more memory cells. The one or more memory cells determined to change state and are still selected to be on are then written by applying a write-current pulse to the memory cells. In one exemplary embodiment, the one or more memory cells comprise one or more phase-change-type memory cell devices.
Abstract:
The present disclosure relates to phase change memory control. An apparatus includes a memory controller. The memory controller includes a word line (WL) control module and a bit line (BL) control module. The memory controller is to determine a WL address based, at least in part, on a received memory address. The memory controller is further to determine a BL address. The apparatus further includes a parameter selection module to select a value of a control parameter based, at least in part, on at least one of the WL address and/or the BL address.
Abstract:
The present disclosure relates to phase change memory control. An apparatus includes a memory controller. The memory controller includes a word line (WL) control module and a bit line (BL) control module. The memory controller is to determine a WL address based, at least in part, on a received memory address. The memory controller is further to determine a BL address. The apparatus further includes a parameter selection module to select a value of a control parameter based, at least in part, on at least one of the WL address and/or the BL address.
Abstract:
A system and technique is disclosed for writing data in a cross-point memory. The state of one or more memory cells of the cross-point memory are sensed and then are continued to be selected and left on. It is then determined which of the one or more memory cells are to change state based on incoming user data that is to be written into the one or more memory cells. The one or more memory cells determined to change state and are still selected to be on are then written by applying a write-current pulse to the memory cells. In one exemplary embodiment, the one or more memory cells comprise one or more phase-change-type memory cell devices.
Abstract:
The present disclosure relates to phase change memory control. An apparatus includes a memory controller. The memory controller includes a word line (WL) control module and a bit line (BL) control module. The memory controller is to determine a WL address based, at least in part, on a received memory address. The memory controller is further to determine a BL address. The apparatus further includes a parameter selection module to select a value of a control parameter based, at least in part, on at least one of the WL address and/or the BL address.
Abstract:
Embodiments of the present disclosure describe techniques and configurations for providing a reset current to a non-volatile random access memory (NVRAM), such as a phase change memory (PCM) device. In an embodiment, the apparatus may comprise an NVRAM device; a selection mirror circuit coupled with the NVRAM device to apply a selection mirror voltage to the NVRAM device, to select a memory cell of the NVRAM device; and a reset mirror circuit coupled with the NVRAM device to apply a reset mirror voltage to the memory cell of the NVRAM device, subsequent to the application of the selection mirror voltage, to reset the memory cell. The reset mirror voltage may be lower than the selection mirror voltage, to facilitate delivery of a reset current above a current threshold to the memory cell. Other embodiments may be described and/or claimed.
Abstract:
The present disclosure relates to a cross-point memory bias scheme. An apparatus includes a memory controller including a word line (WL) control module and a bit line (BL) control module, the memory controller configured to initiate selection of a target memory cell; a sense module configured to determine whether the target memory cell has been selected; and a C-cell bias module configured to establish a C-cell bias if the target cell is not selected.
Abstract:
A memory accessed by rows and/or by columns in which an array of bits can be physically stored in multi-bit wide columns in physically contiguous rows is provided. A multi-bit wide logical column is arranged diagonally across (M/multi-bits) physical rows and (M/multi-bits) physical columns with each of the plurality of multi-bit wide logical columns in the logical row stored in a different physical row and physical multi-bit column.