Abstract:
A method and apparatus for flushing and restoring core memory content to and from, respectively, external memory are described. In one embodiment, the apparatus is an integrated circuit comprising a plurality of processor cores, the plurality of process cores including one core having a first memory operable to store data of the one core, the one core to store data from the first memory to a second memory located externally to the processor in response to receipt of a first indication that the one core is to transition from a first low power idle state to a second low power idle state and receipt of a second indication generated externally from the one core indicating that the one core is to store the data from the first memory to the second memory, locations in the second memory at which the data is stored being accessible by the one core and inaccessible by other processor cores in the IC; and a power management controller coupled to the plurality of cores and located outside the plurality of cores.
Abstract:
Techniques for enabling a rapid clock frequency transition are described. An example of a computing device includes a Central Processing Unit (CPU) that includes a core and noncore components. The computing device also includes a dual mode FIFO that processes data transactions between the core and noncore components. The computing device also includes a frequency control unit that can instruct the core to transition to a new clock frequency. During the transition to the new clock frequency, the dual mode FIFO continues to process data transactions between the core and noncore components.
Abstract:
In an embodiment, a processor includes a first domain to operate according to a first clock. The first domain includes a write source, a payload bubble generator first in first out buffer (payload BGF) to store data packets, and write credit logic to maintain a count of write credits. The processor also includes a second domain to operate according to a second clock. When the write source has a data packet to be stored while the second clock is shut down, the write source is to write the data packet to the payload BGF responsive to the count of write credits being at least one, and after the second clock is restarted the second domain is to read the data packet from the payload BGF. Other embodiments are described and claimed.
Abstract:
Techniques for enabling a rapid clock frequency transition are described. An example of a computing device includes a Central Processing Unit (CPU) that includes a core and noncore components. The computing device also includes a dual mode FIFO that processes data transactions between the core and noncore components. The computing device also includes a frequency control unit that can instruct the core to transition to a new clock frequency. During the transition to the new clock frequency, the dual mode FIFO continues to process data transactions between the core and noncore components.
Abstract:
A method and apparatus for flushing and restoring core memory content to and from, respectively, external memory are described. In one embodiment, the apparatus is an integrated circuit comprising a plurality of processor cores, the plurality of process cores including one core having a first memory operable to store data of the one core, the one core to store data from the first memory to a second memory located externally to the processor in response to receipt of a first indication that the one core is to transition from a first low power idle state to a second low power idle state and receipt of a second indication generated externally from the one core indicating that the one core is to store the data from the first memory to the second memory, locations in the second memory at which the data is stored being accessible by the one core and inaccessible by other processor cores in the IC; and a power management controller coupled to the plurality of cores and located outside the plurality of cores.