Abstract:
A method and apparatus for manipulating tissue. A tissue control point is displayed over an image of the tissue in a user interface. An input is received that moves the tissue control point within the user interface. A first instrument that is physically associated with the tissue is operated based on the received input to thereby manipulate the tissue.
Abstract:
A system and method of variable velocity control of an instrument by a computer-assisted device includes a computer-assisted device that includes an actuator and one or more processors. To perform an operation with an instrument coupled to the computer-assisted device, the one or more processors are configured to set a velocity set point of the actuator to an initial velocity, monitor force or torque applied by the actuator to actuate the instrument, when the applied force or torque is above a first force or torque limit, determine whether a total duration of a set of pauses occurring during the operation of the instrument is below a maximum pause threshold, and in response to determining that the total duration is below the maximum pause threshold, pause the operation of the instrument.
Abstract:
Surgical instruments and assemblies for sealing and cutting tissue monitor jaw angle and/or jaw clamping force to provide feedback to an operator of the surgical instrument indicative of whether the tissue is suitable clamped for sealing and/or cutting. A surgical instrument or assembly includes a jaw operable to clamp tissue, a sealing mechanism, a cutting mechanism, an actuation monitoring assembly, and a feedback assembly. The actuation monitoring assembly monitors jaw angle and/or clamping force. The feedback assembly outputs feedback to the operator, based on the jaw angle and/or clamping force, as to whether the current clamping angle and/or jaw angle is suitable for sealing and/or clamping tissue.
Abstract:
A surgical method is provided, comprising: providing an information structure in a computer readable storage device that associates an indication of surgeon skill level in at least one surgical activity performed using the surgical instrument with a surgical instrument actuator safety state of the surgical instrument for use during performance of the at least one surgical activity using the surgical instrument by a surgeon having the indicated skill level; tracking surgical instrument actuator state of a surgical instrument during performance of a surgical procedure by a surgeon; and transitioning the surgical instrument actuator state of the surgical instrument to the surgical instrument safety state during performance of the at least one surgical activity by the surgeon using the surgical instrument.
Abstract:
A method and apparatus for manipulating tissue. A tissue control point is displayed over an image of the tissue in a user interface. An input is received that moves the tissue control point within the user interface. A first instrument that is physically associated with the tissue is operated based on the received input to thereby manipulate the tissue.
Abstract:
Devices, systems, and methods for providing commanded movement of an end effector of a manipulator while providing a desired movement of one or more joints of the manipulator. Methods include augmenting a Jacobian so that joint movements calculated. from the Jacobian perform one or more auxiliary tasks and/or desired joint movements concurrent with commanded end effector movement, the one or more auxiliary tasks and/or desired joint movements extending into a null-space. The auxiliary tasks and desired joint movements include inhibiting movement of one or more joints, inhibiting collisions between adjacent manipulators or between a manipulator and a patient surface, commanded reconfiguration of one or more joints, or various other tasks or combinations thereof. Such joint movements may be provided using joint velocities calculated from the pseudo-inverse solution of the: augmented Jacobian. Various configurations for systems utilizing such methods are provided herein.
Abstract:
Devices, systems, and methods for avoiding collisions between manipulator arms using a null-space are provided. In one aspect, the system calculates an avoidance movement using a relationship between reference geometries of the multiple manipulators to maintain separation between reference geometries. In certain embodiments, the system determines a relative state between adjacent reference geometries, determines an avoidance vector between reference geometries, and calculates an avoidance movement of one or more manipulators within a null-space of the Jacobian based on the relative state and avoidance vector. The joints may be driven according to the calculated avoidance movement while maintaining a desired state of the end effector or a remote center location about which an instrument shaft pivots and may be concurrently driven according to an end effector displacing movement within a null-perpendicular-space of the Jacobian so as to effect a desired movement of the end effector or remote center.
Abstract:
Methods, apparatus, and systems for controlling the movement of a mechanical body. In accordance with a method, desired movement information is received that identifies a desired motion of a mechanical body, the mechanical body having a first number of degrees of freedom. A plurality of instructions are then generated by applying the received desired movement information to a kinematic model, the kinematic model having a second number of degrees of freedom greater than the first number of degrees of freedom, each of the instructions being configured to control a corresponding one of the second number of degrees of freedom. A subset of the plurality of instructions are then transmitted for use in controlling the first number of degrees of freedom of the mechanical body.
Abstract:
Methods, apparatus, and systems for controlling the movement of a mechanical body. In accordance with a method, desired movement information is received that identifies a desired motion of a mechanical body, the mechanical body having a first number of degrees of freedom. A plurality of instructions are then generated by applying the received desired movement information to a kinematic model, the kinematic model having a second number of degrees of freedom greater than the first number of degrees of freedom, each of the instructions being configured to control a corresponding one of the second number of degrees of freedom. A subset of the plurality of instructions are then transmitted for use in controlling the first number of degrees of freedom of the mechanical body.
Abstract:
A system and method of variable velocity control of an instrument by a computer-assisted device includes a computer-assisted device that includes an actuator and one or more processors. To perform an operation with an instrument coupled to the computer-assisted device, the one or more processors are configured to set a velocity set point of the actuator to an initial velocity, monitor force or torque applied by the actuator to actuate the instrument, when the applied force or torque is above a first force or torque limit, determine whether a total duration of a set of pauses occurring during the operation of the instrument is below a maximum pause threshold, and in response to determining that the total duration is below the maximum pause threshold, pause the operation of the instrument.