摘要:
A thermosetting polymer material capable of being used in powder coatings. The thermosetting polymer material includes at least one hydroxyl functional aliphatic polycarbonates that is formulated and crosslinked with isocyanates to yield a thermoset organic coating material. These materials provide improved weatherability as compared to prior art powder coating materials while also being less expensive than prior art materials utilizing fluorinated polymers.
摘要:
A thermosetting polymer material capable of being used in powder coatings. The thermosetting polymer material includes at least one hydroxyl functional aliphatic polycarbonates that is formulated and crosslinked with isocyanates to yield a thermoset organic coating material. These materials provide improved weatherability as compared to prior art powder coating materials while also being less expensive than prior art materials utilizing fluorinated polymers.
摘要:
In one aspect, the present invention provides a contrast enhancement agent comprising an iron chelate having structure I wherein R1 is independently at each occurrence a hydroxy group, a C1-C3hydroxyalkyl group, or a C1-C3 alkyl group, and b is 0-4; R2-R7 are independently at each occurrence hydrogen, a C1-C3 hydroxyalkyl group, or a C1-C3 alkyl group, with the proviso that at least one of R1-R7 is a hydroxy group or a C1-C3hydroxyalkyl group; and wherein Q is a charge balancing counterion. Also provided is a metal chelating ligand having structure IX and medical formulations comprising the contrast enhancement I.
摘要:
Improved methods for reducing boron concentration in seawater or brackish water, while simultaneously maintaining or improving the salt rejection of membrane and flow performance of polyamide reverse osmosis (RO) membranes include contacting the water with a composite membrane comprising moieties derived from an aromatic sulfonyl halide, a heteroaromatic sulfonyl halide, a sulfinyl halide; a sulfenyl halide; a sulfuryl halide; a phosphoryl halide; a phosphonyl halide; a phosphinyl halide; a thiophosphoryl halide; a thiophosphonyl halide, an isocyanate, a urea, a cyanate, an aromatic carbonyl halide, an epoxide or a mixture thereof.
摘要:
Improved methods for reducing boron concentration in seawater or brackish water, while simultaneously maintaining or improving the salt rejection of membrane and flow performance of polyamide reverse osmosis (RO) membranes include contacting the water with a composite membrane comprising moieties derived from an aromatic sulfonyl halide, a heteroaromatic sulfonyl halide, a sulfinyl halide; a sulfenyl halide; a sulfuryl halide; a phosphoryl halide; a phosphonyl halide; a phosphinyl halide; a thiophosphoryl halide; a thiophosphonyl halide, an isocyanate, a urea, a cyanate, an aromatic carbonyl halide, an epoxide or a mixture thereof.
摘要:
A nanoparticle composition is provided, wherein the composition comprises a nanoparticulate metal oxide; and a phosphorylated polyol comprising at least two phosphate groups. The polyol comprises one or more hydrophilic groups selected from the group consisting of polyethylene ether moieties, polypropylene ether moieties, polybutylene ether moieties, and combinations of two or more of the foregoing hydrophilic moieties. A method of making the nanoparticle composition is also provided. The nanoparticle compositions provided by the present invention may be used as contrast agents in medical imaging techniques such as X-ray and magnetic resonance imaging.
摘要:
In one aspect, the present invention provides a protected ligand precursor having structure XXI wherein R8 is independently at each occurrence a protected hydroxy group, a protected C1-C3 hydroxyalkyl group, or a C1-C3 alkyl group, and b is 0-4; R9-R11 are independently at each occurrence hydrogen, a protected C1-C3 hydroxyalkyl group, or a C1-C3 alkyl group, with the proviso that at least one of R8-R11 is a protected hydroxy group or a protected C1-C3 hydroxyalkyl group; and R12 and R13 are independently at each occurrence acid sensitive protecting groups.
摘要:
Improved methods for reducing boron concentration in seawater or brackish water, while simultaneously maintaining or improving the salt rejection of membrane and flow performance of polyamide reverse osmosis (RO) membranes include contacting the water with a composite membrane comprising moieties derived from an aromatic sulfonyl halide, a heteroaromatic sulfonyl halide, a sulfinyl halide; a sulfenyl halide; a sulfuryl halide; a phosphoryl halide; a phosphonyl halide; a phosphinyl halide; a thiophosphoryl halide; a thiophosphonyl halide, an isocyanate, a urea, a cyanate, an aromatic carbonyl halide, an epoxide or a mixture thereof.
摘要:
The present invention provides a polymer composition comprising structural units derived from an aromatic halosulfonyl isocyanate having structure I wherein “m” is an integer from 2 to 5; “n” is an integer from 1 to 5; Ar is a C3-C40 aromatic radical which is free of aliphatic carbon-hydrogen bonds; and X is halogen. The polymer composition comprising aromatic halosulfonyl isocyanate are useful as membranes. In addition the present invention provides a separation membrane comprising a polymer composition comprising structural units derived from the aromatic halosulfonyl isocyanate having structure I.
摘要:
The present application discloses nanoparticles, particularly nanoparticles of superparamagnetic iron oxide, which find utility in iron therapy and diagnostic imaging such as magnetic resonance (MR). The disclosed nanoparticles have been treated with an α-hydroxyphosphonic acid conjugate containing polyethylene glycol as a hydrophilic moiety to render the nanoparticles sufficiently hydrophilic to find utility in diagnostic imaging. Among the modified hydrophilic nanoparticles disclosed are those in which the hydrophilic moieties of the modifying conjugate are polyethylene oxide-based polymers and have a molecular weight greater than 5,000 dalton and less than or equal to about 30,000 daltons. Surprisingly, these nanoparticles have a more rapid and complete processing in liver of retained nanoparticles when compared to similar nanoparticles in which the PEG-based hydrophilic moiety has a molecular weight less than 5,000.