Abstract:
Provided are a polymer electrolyte membrane used in fuel cells, and a method for producing the same, the method including a step of filling a crosslinkable ion conductor in the pores of a porous nanoweb support; and a step of crosslinking the ion conductor filled in the pores of the porous nanoweb support. The method for producing a polymer electrolyte membrane uses a relatively smaller amount of an organic solvent, can ameliorate defects of the support caused by solvent evaporation, and can enhance the impregnability of the ion conductor to the support and the convenience of the process.
Abstract:
The present invention relates to a polymer electrolyte membrane, and a membrane-electrode assembly and a fuel cell containing the same, and the polymer electrolyte membrane comprises a polymer comprising repeating units represented by the following chemical formulas 1-3. Chemical formulas 1-3 are as defined in the specification. The polymer electrolyte membrane has excellent resistance to radical attack and has improved acid-base interaction, thereby maximizing the function of an ion conductive group, and thus can improve the operation performance of a fuel cell in a low humidification state.
Abstract:
Provided are a polymer electrode membrane including a porous support including a web of nanofibers of a first hydrocarbon-based ion conductor that are arranged irregularly and discontinuously; and a second hydrocarbon-based ion conductor filling the pores of the porous support, the first hydrocarbon-based ion conductor being a product obtained by eliminating at least a portion of the protective groups (Y) in a precursor of the first hydrocarbon-based ion conductor represented by Formula (1), a method for producing the polymer electrolyte membrane, and a membrane electrode assembly including the polymer electrolyte membrane: wherein m, p, q, M, M′, X and Y respectively have the same meanings as defined in the specification.
Abstract:
Disclosed are a reinforced composite membrane for fuel cells including a porous support comprising three-dimensionally irregularly and discontinuously arranged nanofibers of a polymer and a first ionic conductor, and a second ionic conductor filling pores of the porous support, wherein the first ionic conductor is present as nanofibers in the porous support or is present in the nanofibers of the polymer to form the nanofibers together with the polymer, and a membrane-electrode assembly for fuel cells including the same. As a result, impregnation uniformity and impregnation rate of the ionic conductors are improved and proton (hydrogen ion) conductivity is thus enhanced.