Flexible nanostructure electronic devices
    7.
    发明授权
    Flexible nanostructure electronic devices 有权
    柔性纳米结构电子器件

    公开(公告)号:US07956525B2

    公开(公告)日:2011-06-07

    申请号:US10846072

    申请日:2004-05-14

    IPC分类号: H01J1/02

    摘要: A flexible electronic device is made up of nanostructures. Specifically, the device includes a flexible substrate, a film of nanostructures in contact with the flexible substrate, a first conducting element in contact with the film of nanostructures, and a second conducting element in contact with the film of nanostructures. The nanostructures may comprise nanotubes, such as carbon nanotubes disposed along the flexible substrate, such as an organic or polymer substrate. The first and second conductive elements may serve as electrical terminals, or as a source and drain. In addition, the electronic device may include a gate electrode that is in proximity to the nanotubes and not in electrical contact with the nanotubes. In this configuration, the device can operate as a transistor or a FET. The device may also be operated in a resistive mode as a chemical sensor (e.g., for sensing NH3).

    摘要翻译: 灵活的电子设备由纳米结构组成。 具体地,该装置包括柔性基板,与柔性基板接触的纳米结构薄膜,与纳米结构薄膜接触的第一导电元件和与纳米结构薄膜接触的第二导电元件。 纳米结构可以包括纳米管,例如沿着柔性基底设置的碳纳米管,例如有机或聚合物基底。 第一和第二导电元件可以用作电端子,或用作源极和漏极。 此外,电子器件可以包括位于纳米管附近并且不与纳米管电接触的栅电极。 在这种配置中,器件可以作为晶体管或FET工作。 该装置还可以作为化学传感器(例如,用于感测NH 3)以电阻模式操作。

    Modification of selectivity for sensing for nanostructure device arrays
    8.
    发明授权
    Modification of selectivity for sensing for nanostructure device arrays 失效
    纳米结构器件阵列感测选择性的改进

    公开(公告)号:US07575933B2

    公开(公告)日:2009-08-18

    申请号:US11139184

    申请日:2005-05-27

    IPC分类号: G01N21/00

    摘要: An electronic system for selectively detecting and identifying a plurality of chemical species, which comprises an array of nanostructure sensing devices, is disclosed. Within the array, there are at least two different selectivities for sensing among the nanostructure sensing devices. Methods for fabricating the electronic system are also disclosed. The methods involve modifying nanostructures within the devices to have different selectivity for sensing chemical species. Modification can involve chemical, electrochemical, and self-limiting point defect reactions. Reactants for these reactions can be supplied using a bath method or a chemical jet method. Methods for using the arrays of nanostructure sensing devices to detect and identify a plurality of chemical species are also provided. The methods involve comparing signals from nanostructure sensing devices that have not been exposed to the chemical species of interest with signals from nanostructure sensing devices that have been exposed to the chemical species of interest. Nanostructure sensing device array structures that can measure and subtract out environmental factors are also disclosed.

    摘要翻译: 公开了一种用于选择性地检测和识别包括纳米结构感测装置阵列的多种化学物质的电子系统。 在阵列内,在纳米结构感测装置中有至少两种用于感测的不同选择性。 还公开了用于制造电子系统的方法。 这些方法包括修改装置内的纳米结构以具有感测化学物质的不同选择性。 修饰可能涉及化学,电化学和自限制点缺陷反应。 这些反应的反应物可以使用浴法或化学喷射法提供。 还提供了使用纳米结构感测装置的阵列来检测和识别多种化学物种的方法。 该方法涉及将未暴露于感兴趣的化学物质的纳米结构感测装置的信号与已经暴露于感兴趣的化学物质的纳米结构感测装置的信号进行比较。 还公开了可以测量和减去环境因素的纳米结构感测装置阵列结构。

    Boron oxide and related compounds for hydrogen storage
    9.
    发明授权
    Boron oxide and related compounds for hydrogen storage 失效
    用于储氢的氧化硼和相关化合物

    公开(公告)号:US07479240B2

    公开(公告)日:2009-01-20

    申请号:US11271446

    申请日:2005-11-09

    IPC分类号: C09K3/00

    摘要: A hydrogen storage medium is provided, where the medium is comprised of boron oxide and closely related compounds such as orthoboric acid, metaboric acid, hydrated boric acid, and disodium borohydrate. The medium is substantially an amorphous glassy network, albeit with local regions of order, pores, and networks that provide surface area. Hydrogen is adsorbed by the medium with a heat of adsorption of about 9 kJ/mol to about 13 kJ/mol, a value which is higher than that of the heat of adsorption of hydrogen on carbon. The value for the heat of adsorption of hydrogen on the inventive storage medium is provided by computation, and corroborated by experimental observation. The higher heat of adsorption of the medium provides for operation at temperatures higher temperatures higher than those provided by carbon. Further provided are methods by which the storage medium can be prepared in such a form so as to permit high capacity hydrogen storage, as well as an apparatus, with the inventive medium disposed therein, for storing hydrogen.

    摘要翻译: 提供了一种储氢介质,其中介质由氧化硼和紧密相关的化合物如原硼酸,偏硼酸,水合硼酸和硼酸二钠组成。 该介质基本上是非晶玻璃质网络,尽管有局部的顺序区域,孔隙和提供表面积的网络。 氢气吸附在约9kJ / mol至约13kJ / mol的吸附热下,该值高于碳对碳的吸附热。 通过计算提供了本发明储存介质上氢的吸附热值,并通过实验观察证实。 介质吸收较高的热量在比碳提供的温度更高的温度下运行。 还提供了存储介质可以以允许高容量氢存储的形式制备的方法,以及其中设置有本发明介质的装置,用于储存氢。

    Sensitivity control for nanotube sensors
    10.
    发明授权
    Sensitivity control for nanotube sensors 有权
    纳米管传感器的灵敏度控制

    公开(公告)号:US06894359B2

    公开(公告)日:2005-05-17

    申请号:US10280265

    申请日:2002-10-26

    摘要: Nanostructure sensing devices for detecting an analyte are described. The devices include nanostructures connected to conductive elements, all on a substrate. Contact regions adjacent to points of contact between the nanostructures and the conductive elements are given special treatment. The proportion of nanostructure surface area within contact regions can be maximized to effect sensing at very low analyte concentrations. The contact regions can be passivated in an effort to prevent interaction between the environment and the contact regions for sensing at higher analyte concentrations and for reducing cross-sensing. Both contact regions and at least some portion of the nanostructures can be covered with a material that is at least partially permeable to the analyte of interest and impermeable to some other species to tune selectivity and sensitivity of the nanostructure sensing device.

    摘要翻译: 描述了用于检测分析物的纳米结构感测装置。 这些器件包括连接到导电元件的纳米结构,全部在衬底上。 给予与纳米结构和导电元件之间的接触点相邻的接触区域的特殊处理。 可以使接触区域内的纳米结构表面积的比例最大化,以在非常低的分析物浓度下进行感测。 可以钝化接触区域,以防止环境和接触区域之间的相互作用,以便在较高分析物浓度下进行感测并减少交叉感测。 两个接触区域和纳米结构的至少一部分可以被对感兴趣的分析物至少部分可渗透的材料覆盖,并且对于一些其它物质是不可渗透的,以调节纳米结构感测装置的选择性和灵敏度。