摘要:
A nanoelectronic device is combined with a cellular membrane component to provide a sensor for biomolecules or to provide information about the structure of the membrane. The nanoelectronic device may comprise a network of randomly-oriented nanotubes, or other nanostructure, arranged on a substrate with adjacent electrodes so as to operate as a field-effect transistor sensor or as a capacitive sensor. A cellular membrane is disposed over the nanostructure element.
摘要:
Nanostructure sensing devices for detecting an analyte are described. The devices include nanostructures connected to conductive elements, all on a substrate. Contact regions adjacent to points of contact between the nanostructures and the conductive elements are given special treatment. The proportion of nanostructure surface area within contact regions can be maximized to effect sensing at very low analyte concentrations. The contact regions can be passivated in an effort to prevent interaction between the environment and the contact regions for sensing at higher analyte concentrations and for reducing cross-sensing. Both contact regions and at least some portion of the nanostructures can be covered with a material that is at least partially permeable to the analyte of interest and impermeable to some other species to tune selectivity and sensitivity of the nanostructure sensing device.
摘要:
A nanostructure sensing device includes a substrate, a nanotube disposed over the substrate, and at least two conductive elements electrically connected to the nanotube. A electric current on the order of about 10 μA, or greater, is passed through the conductive elements and the nanotube. As a result, the nanotube heats up relative to the substrate. In the alternative, some other method may be used to heat the nanotube. When operated as a sensor with a heated nanotube, the sensor's response and/or recovery time may be markedly improved.
摘要:
A nanoelectronic device is combined with a cellular membrane component to provide a sensor for biomolecules or to provide information about the structure of the membrane. The nanoelectronic device may comprise a network of randomly-oriented nanotubes, or other nanostructure, arranged on a substrate with adjacent electrodes so as to operate as a field-effect transistor sensor or as a capacitive sensor. A cellular membrane is disposed over the nanostructure element.
摘要:
A nanostructured electronic device for detection and measurement of biomolecules, such as blood glucose. Also disclosed are methods of using and manufacturing devices employing nanotubes as electronic transducers.
摘要:
A nanoelectronic sensing device includes a substrate, a nanostructure element disposed adjacent the substrate, and at least a conductive element electrically connected to the nanostructure element. The device is configured to heat at least a portion of the sensor structure including the nanostructure element. In certain embodiments, the nanostructure element comprises at least one nanotube, the nanotube being electrically connected to at least two conductors so as to permit an electric current on the order of 10 microAmps or greater to be passed through the nanotube, causing the nanotube to heat up relative to the substrate. In alternative embodiments, the sensing device includes a platform or membrane which is at least partially thermally isolated by one or more cavities, the platform supporting at least the nanostructure element adjacent to a microheater element. The heating of the sensor structure may be employed, for example, for thermoregulation, to accelerate and/or increase sensor response, and to improve other sensor characteristics.
摘要:
Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes such as anesthesia gases, CO2 and the like in human breath. An integrated monitor system and disposable sensor unit is described which permits a number of different anesthetic agents to be identified and monitored, as well as concurrent monitoring of other breath species, such as CO2. The sensor unit may be configured to be compact, light weight, and inexpensive. Wireless embodiments provide such enhancements as remote monitoring. A simulator system for modeling the contents and conditions of human inhalation and exhalation with a selected mixture of a treatment agent is also described, particularly suited to the testing of sensors to be used in airway sampling.
摘要:
An electronic system and method for detecting analytes, such as carbon dioxide, is provided, using an improved nanostructure sensor (CO2 sensor). The CO2 sensor may comprise a substrate and a nanostructure, such as a one or more carbon nanotubes disposed over the substrate (e.g., as a network). One or more conductive elements may electrically communicate with the nanostructure. A counter or gate electrode may be positioned adjacent the nanostructure. A functionalization material reactive with carbon dioxide may be included, either disposed in contact with the nanostructure or isolated by a dielectric. The sensor may be connected to a circuit responsive to changes in CO2 concentration in the environment. Embodiments are described of medical sensing systems including one or more CO2 sensors. One embodiment comprises a breath sampling cannula which is connected to a sensor unit. In an alternative, the cannula permits supplemental oxygen to be administered, while recovering and measuring analytes in breath samples. The cannula may connect to a portable processor-display unit for monitoring one or more analytes, such as CO2. Another embodiment includes a cannula configured for the monitoring of sleep disorders, such as apnea, comprising one or more sensors disposed adjacent a breath sampling channel, optionally including flow rate or other sensors. The sensors may be connected by wired or wireless links for to a processor/input/display unit. Any of the embodiments may include filters, selectively permeable membranes, absorbents, and the like to precondition the breath sample, may be configured to include complementary chemistry measurements.
摘要:
Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes such ammonia. An environmental control system employing nanoelectronic sensors is described. A personnel safety system configured as a disposable badge employing nanoelectronic sensors is described. A method of dynamic sampling and exposure of a sensor providing a number of operational advantages is described.
摘要:
Nanoelectronic sensors, including sensors for detecting analytes such as CO2, NO, anesthesia gases, and the like in human breath. An integrated multivalent monitor system is described which permits two or more analytes to be measured in breath, for example to monitor pulmonary conditions such as asthma. The monitor system may be configured to be compact, light weight, inexpensive, and to include a microprocessor capable of both analyzing measurements to determine patient status, and storing measurement history. Wireless embodiments provide such enhancements as remote monitoring.