Abstract:
The present disclosure relates to a polymer-based large-area carbon nanomesh and a method for preparing same. More particularly, the present disclosure provides a method for preparing a carbon nanomesh, including: preparing a polymer nanofilm by coating a solution of a block copolymer or a polymer mixture thereof on a substrate; stabilizing the polymer nanofilm by annealing such that the polymer nanofilm is phase-separated, a pore-forming polymer is removed and, at the same time, a nanomesh-forming polymer forms a stabilized porous polymer nanomesh; and carbonizing the stabilized porous polymer nanomesh by annealing at high temperature to prepare a carbon nanomesh. Using phase separation and cyclization of a polymer, a large-area carbon nanomesh with superior activity can be prepared simply with high reproducibility in large scale.
Abstract:
Provided are a composite electric wire structure wherein a carbon material island structure is formed on a surface of a metal wire and a method for manufacturing the same. The carbon material/metal composite electric wire is capable of solving stability problem and preventing a decrease in electrical properties, mechanical properties, etc. In addition, the composite electric wire structure may be produced in commercially viable large scale.
Abstract:
The growth of a specific crystal plane of a polycrystalline metal is induced or suppressed by forming a carbon material on the surface of the polycrystalline metal, and accordingly, the ratio of the crystal plane may be controlled, particularly, the crystal plane may be controlled so as for the polycrystalline metal to be similar to a single crystalline metal. Accordingly, a metal-carbon material composite where a crystal plane is controlled may be mass-produced at low costs through a continuous process.
Abstract:
The present disclosure relates to a polymer-based large-area carbon nanomesh and a method for preparing the same. More particularly, the present disclosure provides a method for preparing a carbon nanomesh such as graphene nanomesh, including: preparing a polymer nanofilm by coating a solution of a block copolymer or a polymer mixture thereof on a substrate; stabilizing the polymer nanofilm by annealing such that the polymer nanofilm is phase-separated, a hole-forming polymer is removed and, at the same time, a nanomesh-forming polymer is cyclized and forms a stabilized polymer nanomesh; and carbonizing the stabilized polymer nanomesh by annealing at high temperature to prepare a carbon nanomesh. Using the phase separation and cyclization, a large-area carbon nanomesh with superior activity can be prepared simply with high reproducibility in large scale.