Abstract:
Memory devices might include control circuitry that, when checking for a match of a stored digit of data and a received digit of data, might be configured to cause the memory device to apply a first voltage level to a control gate of a first memory cell of a memory cell pair, apply a second voltage level different than the first voltage level to a control gate of a second memory cell of that memory cell pair, determine whether that memory cell pair is deemed to be activated or deactivated in response to applying the first and second voltage levels, and deem a match between the stored digit of data and a received digit of data in response, in part, to whether that memory cell pair is deemed to be deactivated.
Abstract:
Methods of operating a memory device include comparing input data to data stored in memory cells coupled to a data line, comparing a representation of a level of current in the data line to a reference, and determining that the input data potentially matches the data stored in the memory cells when the representation of the level of current in the data line is less than the reference. Methods of operating a memory device further include comparing input data to first data and to second data stored in memory cells coupled to a first data line or to a second data line, respectively, comparing representations of the levels of current in the first data line and in the second data line to a first reference and to a different second reference, and deeming one to be a closer match to the input data in response to results of the comparisons.
Abstract:
Methods include receiving a pattern to be searched in a memory having a plurality of sets of memory elements with each set coupled to a separate data line and corresponding to a same set of bit positions of the pattern. Methods further include receiving a pattern of data to be programmed into a memory, programming a first data state into one memory cell of each cell pair of a plurality of cell pairs of a memory array, and programing a second data state into another memory cell of each cell pair of the plurality of cell pairs for each bit position of the pattern. Memory configured to facilitate such methods include a plurality of cell pairs, each cell pair of the plurality of cell pairs programmed to store a same bit of data corresponding to a particular bit position of a pattern to be searched in the memory.
Abstract:
Methods of operating memory include generating a data value indicative of a level of a property sensed from a data line while applying potentials to control gates of memory cells of more than one string of series-connected memory cells connected to that data line. Methods of operating memory further include generating data values indicative of levels of a property sensed from data lines while applying potentials to control gates of memory cells of strings of series-connected memory cells connected to those data lines, performing a logical operation on a set of data values comprising those data values, and determining a potential to be applied to control gates of different memory cells of those strings of series-connected memory cells in response to an output of the logical operation on the set of data values.
Abstract:
Memories including a data line, a plurality of strings of series-connected memory cells selectively connected to the data line, a plurality of first access lines each coupled to a control gate of a respective memory cell of each string of series-connected memory cells of the plurality of strings of series-connected memory cells, and a plurality of second access lines each coupled to a control gate of a respective memory cell of a respective string of series-connected memory cells of the plurality of strings of series-connected memory cells, as well as methods of operating similar memories.
Abstract:
Methods for operating a memory, and memory configured to perform similar methods, include programming a first series string of memory cells of a first group of memory cells such that pairs of complementary memory cells have complementary states to provide a first minterm, the first minterm comprising a plurality of first variables wherein each variable is enabled responsive to a state of its respective memory cell, and programming a second series string of memory cells of a second group of memory cells such that pairs of complementary memory cells have complementary states to provide a second minterm, the second minterm comprising the first minterm that is enabled responsive to the state of its respective memory cell, the second minterm further comprising a plurality of second variables that are each enabled responsive to the state of their respective memory cell.
Abstract:
A memory device has first and second strings of memory cells coupled to a data line. The first string is for storing a first bit having a first bit significance, and the second string is for storing a second bit having a second bit significance different than the first bit significance. A first resistor is coupled in series with the first string. A second resistor is coupled in series with the second string. The memory device is configured to set the first resistor to a first resistance based on the first bit significance and the second resistor to a second resistance based on the second bit significance so that the second resistance is different than the first resistance. The memory device is configured to compare a first bit of input data to the first bit and to compare a second bit of the input data to the second bit.
Abstract:
Devices, systems and methods for operating a memory device facilitating a neural network in a memory device are disclosed. In at least one embodiment, the memory device is operated having a feed-ward neural network operating scheme. In at least one other embodiment, memory cells are operated to emulate a number of neural models to facilitate one or more neural network operating characteristics in the memory device.
Abstract:
Methods of searching and methods of programming a memory are provided. In one such method of searching, a determination is made as to whether an attribute of a data feature vector programmed in a memory matches within a particular range of values of a same attribute of an input feature vector provided to the memory. In at least some embodiments, the determination is made by applying a pair of gate voltages to a pair of memory cells storing the value of the attribute of the data feature vector.
Abstract:
Memory devices might include a plurality of memory cell pairs each configured to be programmed to store a digit of data; and control circuitry configured to cause the memory device to compare the stored digit of data of each memory cell pair to a received digit of data, determine whether a match condition or a no-match condition is indicated between the stored digit of data of each memory cell pair and the received digit of data, and deem a match condition to be met between the received digit of data and the stored digits of data of the plurality of memory cell pairs in response to a match condition being determined for a majority of memory cell pairs of the plurality of memory cell pairs.