Abstract:
A device with a microphone and a condensation collection apparatus to prevent migration of condensation to the microphone is provided. The device comprises a microphone; a board having an acoustic port therethrough, the microphone positioned to accept sound through the acoustic port; a moisture-resistant, acoustically transparent membrane over the acoustic port; an outer membrane that receives the sound for the microphone, the outer membrane being non-permeable to at least moisture; and a condensation collection apparatus between the outer membrane and the acoustically transparent membrane. The condensation collection apparatus comprises: an aperture through which the sound from the outer membrane passes; and one or more condensation collection features, at an outer-membrane facing side of the condensation collection apparatus, configured to: collect condensation that migrates from an inner side of the outer membrane; and prevent migration of the condensation, that is collected, through the aperture.
Abstract:
An improved keypad and speaker assembly is provided. The assembly (100) comprises a speaker grille formed of torturous porting (220), and a keyboard (108) comprising audio slots (120) which are offset beneath the tortuous porting (220). The speaker (104) is aligned beneath the keyboard (108). The tortuous porting (220) and audio slots (120) provide an unobstructed air passage/path between the speaker and ambient while protecting against water intrusion.
Abstract:
A removable cartridge for a portable communication device. The removable cartridge includes frame having a first surface, and an opposite second surface. The second surface is non-planar and is shaped to conform to a shape of a speaker cone in the portable communications device. The removable cartridge also includes a membrane coupled to the first surface of the frame. A portion of the membrane is suspended over an open gap defined by the frame.
Abstract:
A method and apparatus are described for providing an acoustically-resistive air-permeable venting structure within a sealed microphone acoustic cavity. A microphone is mounted on a printed circuit board and positioned within a housing. A water-resistant membrane seals the microphone from an exterior of the housing, and a active acoustic cavity establishes an acoustical connection between the water-resistant membrane and the microphone. An acoustically-resistive air-permeable venting structure is formed in the body of the printed circuit board and connects to the active acoustic cavity either directly or via a separate vent path. The venting structure provides a viscous dampening effect by venting an active acoustic cavity of the electronic device to the rest of the enclosure sealed by the water-resistant membrane.
Abstract:
Methods and systems for verification of an environmental seal provided by an encapsulant coating of a bottom-ported MEMS microphone package. A purposeful acoustic leak is provided on an upper surface of a package housing (in the form of an additional acoustic port) and a sealing material is applied to an outer surface of the package housing. A properly applied encapsulant coating will completely seal the additional acoustic port on the upper surface of the package housing. However, the placement of the additional acoustic port on the upper surface of the package housing will have a significant, detectable effect on the frequency response of the microphone if it is not completely sealed by the encapsulant coating. Accordingly, the environmental seal provided by the encapsulant coating is verified by confirming, based on the acoustic frequency response testing, that the encapsulant coating has effectively sealed the additional acoustic port on the upper surface of the package housing.
Abstract:
A removable cartridge for a portable communication device. The removable cartridge includes frame having a first surface, and an opposite second surface. The second surface is non-planar and is shaped to conform to a shape of a speaker cone in the portable communications device. The removable cartridge also includes a membrane coupled to the first surface of the frame. A portion of the membrane is suspended over an open gap defined by the frame.
Abstract:
A microphone porting and venting assembly (100) is formed of a remote support substrate (118) providing a (130) acoustically resistive element with dedicated venting cavities (132) along with an external baffle (220) providing acoustic channels (212, 214, 216) which further provide water drainage and external sound sampling points (222, 224, 226). The microphone porting and venting assembly (100) is well suited waterproof, noise cancelling microphone systems.
Abstract:
A method and apparatus are described for providing an acoustically-resistive air-permeable venting structure within a sealed microphone acoustic cavity. A microphone is mounted on a printed circuit board and positioned within a housing. A water-resistant membrane seals the microphone from an exterior of the housing, and a active acoustic cavity establishes an acoustical connection between the water-resistant membrane and the microphone. An acoustically-resistive air-permeable venting structure is formed in the body of the printed circuit board and connects to the active acoustic cavity either directly or via a separate vent path. The venting structure provides a viscous dampening effect by venting an active acoustic cavity of the electronic device to the rest of the enclosure sealed by the water-resistant membrane.
Abstract:
A microphone porting and venting assembly (100) is formed of a remote support substrate (118) providing a (130) acoustically resistive element with dedicated venting cavities (132) along with an external baffle (220) providing acoustic channels (212, 214, 216) which further provide water drainage and external sound sampling points (222, 224, 226). The microphone porting and venting assembly (100) is well suited waterproof, noise cancelling microphone systems.