Abstract:
RF/MRI compatible leads include at least one conductor that turns back on itself at least twice in a lengthwise direction, and can turn back on itself at least twice at multiple locations along its length. The at least one electrical lead can be configured so that the lead heats local tissue less than about 10 degrees Celsius (typically about 5 degrees Celsius or less) or does not heat local tissue when a patient is exposed to target RF frequencies at a peak input SAR of at least about 4 W/kg and/or a whole body average SAR of at least about 2 W/kg. Related devices and methods of fabricating leads are also described.
Abstract:
RF/MRI compatible leads include at least one conductor that turns back on itself at least twice in a lengthwise direction, and can turn back on itself at least twice at multiple locations along its length. The at least one electrical lead can be configured so that the lead heats local tissue less than about 10 degrees Celsius (typically about 5 degrees Celsius or less) or does not heat local tissue when a patient is exposed to target RF frequencies at a peak input SAR of at least about 4 W/kg and/or a whole body average SAR of at least about 2 W/kg. Related devices and methods of fabricating leads are also described.
Abstract:
An MRI-compatible catheter that reduces localized heating due to MR scanner-induced currents includes an elongated flexible shaft having a distal end portion and an opposite proximal end portion. A handle is attached to the proximal end portion and includes an electrical connector interface configured to be in electrical communication with an MRI scanner. One or more RF tracking coils are positioned adjacent the distal end portion of the shaft. Each RF tracking coil includes a conductive lead, such as a coaxial cable, that extends between the RF tracking coil and the electrical connector interface and electrically connects the RF tracking coil to an MRI scanner. In some embodiments of the present invention, the conductive lead has a length sufficient to define an odd harmonic/multiple of a quarter wavelength of the operational frequency of the MRI Scanner, and/or includes a series of pre-formed back and forth segments along its length.
Abstract:
MRI compatible localization and/or guidance systems for facilitating placement of an interventional therapy and/or device in vivo include: (a) a mount adapted for fixation to a patient; (b) a targeting cannula with a lumen configured to attach to the mount so as to be able to controllably translate in at least three dimensions; and (c) an elongate probe configured to snugly slidably advance and retract in the targeting cannula lumen, the elongate probe comprising at least one of a stimulation or recording electrode. In operation, the targeting cannula can be aligned with a first trajectory and positionally adjusted to provide a desired internal access path to a target location with a corresponding trajectory for the elongate probe. Automated systems for determining an MR scan plane associated with a trajectory and for determining mount adjustments are also described.
Abstract:
MRI compatible localization and/or guidance systems for facilitating placement of an interventional therapy and/or device in vivo include: (a) a mount adapted for fixation to a patient; (b) a targeting cannula with a lumen configured to attach to the mount so as to be able to controllably translate in at least three dimensions; and (c) an elongate probe configured to snugly slidably advance and retract in the targeting cannula lumen, the elongate probe comprising at least one of a stimulation or recording electrode. In operation, the targeting cannula can be aligned with a first trajectory and positionally adjusted to provide a desired internal access path to a target location with a corresponding trajectory for the elongate probe. Automated systems for determining an MR scan plane associated with a trajectory and for determining mount adjustments are also described.
Abstract:
MRI compatible localization and/or guidance systems for facilitating placement of an interventional therapy and/or device in vivo include: (a) a mount adapted for fixation to a patient; (b) a targeting cannula with a lumen configured to attach to the mount so as to be able to controllably translate in at least three dimensions; and (c) an elongate probe configured to snugly slidably advance and retract in the targeting cannula lumen, the elongate probe comprising at least one of a stimulation or recording electrode. In operation, the targeting cannula can be aligned with a first trajectory and positionally adjusted to provide a desired internal access path to a target location with a corresponding trajectory for the elongate probe. Automated systems for determining an MR scan plane associated with a trajectory and for determining mount adjustments are also described.
Abstract:
MRI/RF compatible leads include at least one conductor, a respective conductor having at least one segment with a multi-layer stacked coil configuration. The lead can be configured so that the lead heats local tissue less than about 10 degrees Celsius (typically about 5 degrees Celsius or less) or does not heat local tissue when a patient is exposed to target RF frequencies at a peak input SAR of at least about 4 W/kg and/or a whole body average SAR of at least about 2 W/kg. Related leads and methods of fabricating leads are also described.
Abstract:
MRI/RF compatible leads include at least one conductor, a respective conductor having at least one segment with a multi-layer stacked coil configuration. The lead can be configured so that the lead heats local tissue less than about 10 degrees Celsius (typically about 5 degrees Celsius or less) or does not heat local tissue when a patient is exposed to target RF frequencies at a peak input SAR of at least about 4 W/kg and/or a whole body average SAR of at least about 2 W/kg. Related leads and methods of fabricating leads are also described.
Abstract:
MRI compatible localization and/or guidance systems for facilitating placement of an interventional therapy and/or device in vivo include: (a) a mount adapted for fixation to a patient; (b) a targeting cannula with a lumen configured to attach to the mount so as to be able to controllably translate in at least three dimensions; and (c) an elongate probe configured to snugly slidably advance and retract in the targeting cannula lumen, the elongate probe comprising at least one of a stimulation or recording electrode. In operation, the targeting cannula can be aligned with a first trajectory and positionally adjusted to provide a desired internal access path to a target location with a corresponding trajectory for the elongate probe. Automated systems for determining an MR scan plane associated with a trajectory and for determining mount adjustments are also described.
Abstract:
Some embodiments are directed to MRI/RF compatible medical interventional devices. A plurality of spaced apart high impedance circuit segments are configured to have a high impedance at a high range of radiofrequencies and a low impedance at a low range of frequencies. The high impedance circuit segments may comprise co-wound coiled inductors and can reduce, block or inhibit RJ-transmission along the lead system (20) during exposure to RF associated with a high-Held magnet MRI systems, while permuting passage of low frequency physiologic signals, treatments and/or stimuli. The devices can include at least one electrode.