摘要:
The present invention provides a novel glass composition in which fluorescence derived from bismuth (Bi) is obtained and whose meltability is improved. The glass composition of the present invention includes bismuth oxide, Al2O3 and SiO2. SiO2 is a main component of glass network forming oxide included in the glass composition. The glass composition further includes at least one oxide selected from TiO2, GeO2, P2O5 and B2O3. A total content of SiO2, the at least one oxide, Y2O3 and lanthanide oxide is over 80 mol %. Bismuth included in the bismuth oxide functions as a luminous species. Upon irradiation of excitation light, the glass composition emits fluorescence in the infrared wavelength range.
摘要翻译:本发明提供了一种新型玻璃组合物,其中获得了来自铋(Bi)的荧光并且其熔融性得到改善。 本发明的玻璃组合物包括氧化铋,Al 2 O 3 O 3和SiO 2。 SiO 2是包含在玻璃组合物中的形成玻璃网络的氧化物的主要成分。 该玻璃组合物还包含至少一种选自TiO 2,GeO 2,P 2 O 5 5的氧化物和 B< 2< 3> 3< 3> SiO 2的总含量,至少一种氧化物,Y 2 O 3 N 3和镧系元素氧化物的含量超过80mol%。 氧化铋中包含的铋作为发光物质起作用。 在照射激发光时,玻璃组合物在红外波长范围内发射荧光。
摘要:
The present invention provides a glass composition that exhibits a fluorescence function and an optical amplification function in a wide wavelength range. This glass composition includes a bismuth oxide, a silicon oxide, an aluminum oxide, and a divalent metal oxide, and the glass composition emits fluorescence in an infrared wavelength region through irradiation of excitation light, with bismuth contained in the bismuth oxide functioning as a fluorescent source.
摘要:
The present invention provides a glass composition that exhibits a fluorescence function and an optical amplification function in a wide wavelength range. This glass composition includes a bismuth oxide, a silicon oxide, an aluminum oxide, and a divalent metal oxide, and the glass composition emits fluorescence in an infrared wavelength region through irradiation of excitation light, with bismuth contained in the bismuth oxide functioning as a fluorescent source.
摘要:
There is provided a wide-band optical amplifying device capable of performing amplification over a wideband in infrared range. The wideband optical amplifier is characterized in that optical amplification is realized by optically exciting a glass or a crystal having bismuth as fluorescent center and that the amplification wavelength is 1000 nm to 1600 nm.
摘要:
An object of the present invention is to provide an extreme ultraviolet light source target which can emits extreme ultraviolet light with high emission efficiency. A solid target made of heavy metal or heavy-metal compound and having a density 0.5 to 80% that of the crystal density is used. When the target is irradiated with a laser beam, plasma of the heavy metal contained in the target is generated, and extreme ultraviolet light having a predetermined wavelength which corresponds to the kind of the heavy metal is emitted from the plasma. When the density of the target is made to be smaller than the crystal density as described above, space distribution of the density of the generated plasma can be controlled, and the region in which plasma absorbs energy of the laser beam overlaps the region in which the plasma emits the extreme ultraviolet light. Thus, emission efficiency can be improved, preventing energy loss. For example, in a case where the SnO2 target having a density 24% of the crystal density is used, the emission efficiency at around 13.5 nm wavelength is higher than in the case where a Sn crystal target is used.
摘要:
The invention counterbalances the defects of optical glass and optical plastic so as to realize a high precision aspherical processing. The optical lens 1 includes a matrix 2 of optical glass and a coating of optical resin material applied to the surface of the matrix 2. A reflective wavefront of a lens plane 4 of the optical lens 1 is measured by means of a interferometer 5. The wavefront from the interferometer 5 is monitored by a computer system 7 to provide monitoring information. The lens plane 4 is irradiated or scanned with a short wavelength, ultraviolet laser beam L in accordance with the monitoring information, whereby the lens plane 4 is processed with the ultraviolet laser beam in non-contact manner into a shape to provide a most appropriate reflective wavefront.
摘要:
It is an object of the present invention to provide a copper-containing silica glass which emits fluorescence having a peak in a wavelength range of from 520 nm to 580 nm under irradiation of ultraviolet light with a wavelength of 400 nm or less, and which is excellent in long term stability even in the high output use. The copper-containing silica glass is made to have copper of from 5 wtppm to 200 wtppm, which emits fluorescence having a peak in a wavelength range of from 520 nm to 580 nm under irradiation of ultraviolet light with a wavelength ranging from 160 nm to 400 nm, and in which an internal transmittance per 2.5 mm thickness at a wavelength of 530 nm is 95% or more.
摘要:
An object of the present invention is to provide an extreme ultraviolet light source target which can emits extreme ultraviolet light with high emission efficiency. A solid target made of heavy metal or heavy-metal compound and having a density 0.5 to 80% that of the crystal density is used. When the target is irradiated with a laser beam, plasma of the heavy metal contained in the target is generated, and extreme ultraviolet light having a predetermined wavelength which corresponds to the kind of the heavy metal is emitted from the plasma. When the density of the target is made to be smaller than the crystal density as described above, space distribution of the density of the generated plasma can be controlled, and the region in which plasma absorbs energy of the laser beam overlaps the region in which the plasma emits the extreme ultraviolet light. Thus, emission efficiency can be improved, preventing energy loss. For example, in a case where the SnO2 target having a density 24% of the crystal density is used, the emission efficiency at around 13.5 nm wavelength is higher than in the case where a Sn crystal target is used.
摘要:
It is an object of the present invention to provide a copper-containing silica glass which emits fluorescence having a peak in a wavelength range of from 520 nm to 580 nm under irradiation of ultraviolet light with a wavelength of 400 nm or less, and which is excellent in long term stability even in the high output use. The copper-containing silica glass is made to have copper of from 5 wtppm to 200 wtppm, which emits fluorescence having a peak in a wavelength range of from 520 nm to 580 nm under irradiation of ultraviolet light with a wavelength ranging from 160 nm to 400 nm, and in which an internal transmittance per 2.5 mm thickness at a wavelength of 530 nm is 95% or more.
摘要:
It is an object of the present invention to provide a copper-containing silica glass which emits fluorescence having a peak in a wavelength range of from 520 nm to 580 nm under irradiation of ultraviolet light with a wavelength of 400 nm or less, and which is excellent in long term stability even in the high output use.The copper-containing silica glass is made to have copper of from 5 wtppm to 200 wtppm, which emits fluorescence having a peak in a wavelength range of from 520 nm to 580 nm under irradiation of ultraviolet light with a wavelength ranging from 160 nm to 400 nm, and in which an internal transmittance per 2.5 mm thickness at a wavelength of 530 nm is 95% or more.