摘要:
A laser device including a plurality of oscillating means for oscillating a plurality of laser lights being continuous lights and having frequencies different from each other, respectively, multiplexing means for multiplexing, after amplifying or without amplifying, the respective laser lights oscillated from the respective oscillating means at a predetermined position to generate a multiplexed light, and phase control means for controlling the phase of each of the laser lights so that a peak in output of the multiplexed light repeatedly appears at predetermined time intervals at the predetermined position (so that the same pulse temporal waveform repeatedly appears at predetermined time intervals).
摘要:
The present invention is made to provide an extreme ultraviolet light source target or an X-ray source target having a good operationality. An extreme ultraviolet light source target in accordance with an aspect of the present invention is obtained by including a heavy metal such as tin into a matrix made of a polymeric material such as hydroxylpropylcellulose (HPC). The target can be manufactured by mixing the heavy metal and the polymeric material with a solvent, and evaporating the solvent. Since the target uses the polymeric material as a matrix, the target can be easily deformed to have a desired shape. For this reason, the target can be easily attached to a target holder irrespective of the shape of the holder, resulting in a good operationality of the target. Furthermore, an emission efficiency can be improved by including the heavy metal at a low density.
摘要:
A laser gain medium includes an optical medium configured to transmit a laser beam and having an incident face, a first face, a second face opposing to the first face; and gain media configured to amplify the laser beam while reflecting the laser beam. At least one of the gain media is joined on a first face of the optical medium as a first face gain medium, and at least one of the remaining gain media is joined on a second face of the optical medium as a second face gain medium. The laser beam is incident into the optical medium, and is amplified by the first face gain medium and the second face gain medium while being alternately reflected by the first face gain medium and the second face gain medium.
摘要:
A laser gain medium includes an optical medium configured to transmit a laser beam and having an incident face, a first face, a second face opposing to the first face; and gain media configured to amplify the laser beam while reflecting the laser beam. At least one of the gain media is joined on a first face of the optical medium as a first face gain medium, and at least one of the remaining gain media is joined on a second face of the optical medium as a second face gain medium. The laser beam is incident into the optical medium, and is amplified by the first face gain medium and the second face gain medium while being alternately reflected by the first face gain medium and the second face gain medium.
摘要:
A laser gain medium includes an optical medium configured to transmit a laser beam and having an incident face, a first face, a second face opposing to the first face; and gain media configured to amplify the laser beam while reflecting the laser beam. At least one of the gain media is joined on a first face of the optical medium as a first face gain medium, and at least one of the remaining gain media is joined on a second face of the optical medium as a second face gain medium. The laser beam is incident into the optical medium, and is amplified by the first face gain medium and the second face gain medium while being alternately reflected by the first face gain medium and the second face gain medium.
摘要:
An object of the present invention is to provide an extreme ultraviolet light source target which can emits extreme ultraviolet light with high emission efficiency. A solid target made of heavy metal or heavy-metal compound and having a density 0.5 to 80% that of the crystal density is used. When the target is irradiated with a laser beam, plasma of the heavy metal contained in the target is generated, and extreme ultraviolet light having a predetermined wavelength which corresponds to the kind of the heavy metal is emitted from the plasma. When the density of the target is made to be smaller than the crystal density as described above, space distribution of the density of the generated plasma can be controlled, and the region in which plasma absorbs energy of the laser beam overlaps the region in which the plasma emits the extreme ultraviolet light. Thus, emission efficiency can be improved, preventing energy loss. For example, in a case where the SnO2 target having a density 24% of the crystal density is used, the emission efficiency at around 13.5 nm wavelength is higher than in the case where a Sn crystal target is used.
摘要:
A laser gain medium includes an optical medium configured to transmit a laser beam and having an incident face, a first face, a second face opposing to the first face; and gain media configured to amplify the laser beam while reflecting the laser beam. At least one of the gain media is joined on a first face of the optical medium as a first face gain medium, and at least one of the remaining gain media is joined on a second face of the optical medium as a second face gain medium. The laser beam is incident into the optical medium, and is amplified by the first face gain medium and the second face gain medium while being alternately reflected by the first face gain medium and the second face gain medium.
摘要:
The present invention is made to provide an extreme ultraviolet light source target or an X-ray source target having a good operationality. An extreme ultraviolet light source target in accordance with an aspect of the present invention is obtained by including a heavy metal such as tin into a matrix made of a polymeric material such as hydroxylpropylcellulose (HPC). The target can be manufactured by mixing the heavy metal and the polymeric material with a solvent, and evaporating the solvent. Since the target uses the polymeric material as a matrix, the target can be easily deformed to have a desired shape. For this reason, the target can be easily attached to a target holder irrespective of the shape of the holder, resulting in a good operationality of the target. Furthermore, an emission efficiency can be improved by including the heavy metal at a low density.
摘要:
An object of the present invention is to provide an extreme ultraviolet light source target which can emits extreme ultraviolet light with high emission efficiency. A solid target made of heavy metal or heavy-metal compound and having a density 0.5 to 80% that of the crystal density is used. When the target is irradiated with a laser beam, plasma of the heavy metal contained in the target is generated, and extreme ultraviolet light having a predetermined wavelength which corresponds to the kind of the heavy metal is emitted from the plasma. When the density of the target is made to be smaller than the crystal density as described above, space distribution of the density of the generated plasma can be controlled, and the region in which plasma absorbs energy of the laser beam overlaps the region in which the plasma emits the extreme ultraviolet light. Thus, emission efficiency can be improved, preventing energy loss. For example, in a case where the SnO2 target having a density 24% of the crystal density is used, the emission efficiency at around 13.5 nm wavelength is higher than in the case where a Sn crystal target is used.