摘要:
A deposition method for depositing on a substrate includes the step of: using a process medium made by adding a precursor to a medium in a supercritical state. The precursor is added to the medium in the supercritical state where the precursor is dissolved in an organic solvent.
摘要:
A film formation method of forming a film on a fine-pattern by supplying a processing medium that is in the supercritical state in which a precursor is dissolved on a target substrate is disclosed. The film formation method includes a first process of supplying the processing medium on the target substrate, the temperature of which is set at a first temperature that is lower than a film formation minimum temperature that is the lowest temperature at which film formation takes place, and a second process of forming the film on the target substrate by raising the temperature of the target substrate from the first temperature to a second temperature that is higher than the film formation minimum temperature.
摘要:
In a film deposition method which forms a Cu film on a Cu diffusion preventing film formed on a substrate, a contact film which is provided for adhering the Cu film to the Cu diffusion preventing film is formed on the Cu diffusion preventing film. A processing medium in which a precursor is dissolved in a medium of a supercritical state is supplied to the substrate so that the Cu film is formed on the contact film.
摘要:
There is provided a substrate treatment method performed on a substrate before forming a Cu film on a surface of a base material of the substrate. In the substrate treatment method, a substrate on which a Cu film is to be formed is prepared; and a specific treatment is performed on the substrate so that a crystalline orientation of the surface of the base material of the substrate has a small lattice mismatch with the Cu film.
摘要:
A cleaning method of a substrate processor that reduces damage to a member in a substrate processing container. The method of cleaning the substrate processing container of the substrate processor that processes a target substrate according to the present invention includes: introducing gas into a remote plasma generating unit of the substrate processor; exciting the gas by the remote plasma generating unit, and generating reactive species; and supplying the reactive species to the processing container from the remote plasma generating unit, and pressurizing the processing container at 1333 Pa or greater.
摘要:
A cleaning method of a substrate processor that reduces damage to a member in a substrate processing container. The method of cleaning the substrate processing container of the substrate processor that processes a target substrate according to the present invention includes: introducing gas into a remote plasma generating unit of the substrate processor; exciting the gas by the remote plasma generating unit, and generating reactive species; and supplying the reactive species to the processing container from the remote plasma generating unit, and pressurizing the processing container at 1333 Pa or greater.
摘要:
Disclosed is a film-forming method characterized by comprising a step for forming a primary Cu film on a substrate by using a divalent Cu source material, and another step for forming a secondary Cu film on the primary Cu film by using a monovalent Cu source material.
摘要:
There is provided a substrate treatment method performed on a substrate before forming a Cu film on a surface of a base material of the substrate. In the substrate treatment method, a substrate on which a Cu film is to be formed is prepared; and a specific treatment is performed on the substrate so that a crystalline orientation of the surface of the base material of the substrate has a small lattice mismatch with the Cu film.
摘要:
A metal CVD process includes a step (A) of introducing a gaseous source material containing a metal carbonyl compound into a process space adjacent to a surface of a substrate to be processed in such a manner that the metal carbonyl compound has a first partial pressure, and a step (B) of depositing a metal film on the surface of the substrate by introducing a gaseous source material containing the metal carbonyl compound into the process space in such a mater that the metal carbonyl compound has a second, smaller partial pressure. The step (A) is conducted such that there is caused no substantial deposition of the metal film on the substrate.