摘要:
An object of the present invention is to prepare a fine particle with high durability and high brightness, in which semiconductor nanoparticles are assembled. The present invention provides fluorescent fine particles comprising Cd- and Se-containing semiconductor nanoparticles dispersed in silicon-containing fine particles, wherein the average particle size of the silicon-containing fine particles is 20 to 100 nm, and the number of semiconductor nanoparticles dispersed in the silicon-containing fine particles is 10 or more.
摘要:
The present invention provides a luminescent fiber, which retains a certain shape with assembled nanoparticles, and a method for producing the luminescent fiber. Specifically, the present invention provides a luminescent fiber comprising silicon and semiconductor nanoparticles having a mean particle size of 2 to 12 nm, the luminescent fiber having a diameter of 20 nm to 2 μm, a length of 40 nm to 500 μm, an aspect ratio of 2 to 1,000, and photoluminescence efficiency of not less than 5%.
摘要:
The present invention provides semiconductor-nanoparticle-dispersed small silica glass particles that emit bright fluorescent light with high fluorescence quantum yield and high density, compared to the conventional semiconductor-nanoparticle-dispersed small glass particles, and that have excellent fluorescence intensity stability over time; and a process for preparing the same. The semiconductor-nanoparticle-dispersed silica glass particles have a mean particle size of not less than 10 nanometers and not more than 5 micrometers, and contain a hydrolyzed alkoxide and semiconductor nanoparticles at a concentration of not less than 2×10−5 mol/l and not more than 1×10−2 mol/l. The particles emit fluorescent light with a fluorescence quantum yield (quantum yield) of 25% or more (and 60% or more), when dispersed in a solution.
摘要:
An object of the present invention is to reduce the incompleteness of the surface state due to lattice constant and steric hindrance, which was heretofore nearly unavoidable, in the surface treatment of light-emitting semiconductor nanoparticles. The present invention provides an excellent luminescent material that has enhanced photoluminescence efficiency, reduced photoluminescence spectrum width, and increased chemical resistance. Specifically, the present invention provides a luminescent material comprising semiconductor nanoparticles having a mean particle size of 2 to 12 nm and a band gap of 3.8 eV or less, each of the semiconductor nanoparticles being coated with a silicon-containing layer, the semiconductor nanoparticles in the luminescent material having a peak emission wavelength 20 nm or more towards the longer-wavelength side than the peak emission wavelength of the semiconductor nanoparticles alone.
摘要:
The present invention provides semiconductor-nanoparticle-dispersed small silica glass particles that emit bright fluorescent light with high fluorescence quantum yield and high density, compared to the conventional semiconductor-nanoparticle-dispersed small glass particles, and that have excellent fluorescence intensity stability over time; and a process for preparing the same. The semiconductor-nanoparticle-dispersed silica glass particles have a mean particle size of not less than 10 nanometers and not more than 5 micrometers, and contain a hydrolyzed alkoxide and semiconductor nanoparticles at a concentration of not less than 2×10−5 mol/l and not more than 1×10−2 mol/l. The particles emit fluorescent light with a fluorescence quantum yield (quantum yield) of 25% or more (and 60% or more), when dispersed in a solution.
摘要:
This invention provides a novel phosphor material that has better brightness than conventional phosphors using dispersed rare earth ions, and that possesses excellent light resistance, temporal stability, and the like, and a light-emitting device with high brightness comprising such phosphor material and an excitation ultraviolet light source corresponding to the properties thereof. A phosphor comprising a silicon-containing solid matrix and semiconductor superfine particles dispersed therein at a concentration of 5×10−4 to 1×10−2 mol/L, said semiconductor superfine particles having a fluorescence quantum yield of 3% or greater and a diameter of 1.5 to 5 nm, and a light-emitting device including said phosphor and a light source for excitation light with an intensity of 3 to 800 W/cm2.
摘要:
This invention provides a novel phosphor material that has better brightness than conventional phosphors using dispersed rare earth ions, and that possesses excellent light resistance, temporal stability, and the like, and a light-emitting device with high brightness comprising such phosphor material and an excitation ultraviolet light source corresponding to the properties thereof. A phosphor comprising a silicon-containing solid matrix and semiconductor superfine particles dispersed therein at a concentration of 5×10−4 to 1×10−2 mol/L, said semiconductor superfine particles having a fluorescence quantum yield of 3% or greater and a diameter of 1.5 to 5 nm, and a light-emitting device including said phosphor and a light source for excitation light with an intensity of 3 to 800 W/cm2.
摘要:
Nanoparticles having a core/shell structure consisting of a core comprising a Group III element and a Group V element at a molar ratio of the Group III element to the Group V element in the range of 1.25 to 3.0, and a shell comprising a Group II element and a Group VI element and having a thickness of 0.2 nm to 4 nm, the nanoparticles having a photoluminescence efficiency of 10% or more and a diameter of 2.5 to 10 nm; a method of producing the water-dispersible nanoparticles and a method of producing a glass matrix having the nanoparticles dispersed therein.
摘要:
A transformer integrated type printed circuit board includes: a transformer including a core, a primary winding wire, and a secondary winding wire; and a printed circuit board including a surface layer and an internal layer in which wiring patterns are respectively formed, and having a plurality of insertion portions into which a plurality of leg portions of the core are respectively inserted. The primary winding wire is disposed in the surface layer of the printed circuit board so as to be wound between the leg portions, and the secondary winding wire is disposed in the internal layer of the printed circuit board so as to be wound between the leg portions. The primary winding wire is small in number of windings, is large in width, and is large in thickness, in comparison with the secondary winding wire.
摘要:
A power supply device includes: a power factor correction circuit which includes a capacitor and which corrects a power factor of power; a DC-DC converter which includes a switching element and which steps up or down an output voltage of the power factor correction circuit; a control unit; and a voltage detection unit which detects a voltage of an input side of the power factor correction circuit. The control unit controls the switching element such that an output voltage of the DC-DC converter is gradually reduced when stopping an operation of the DC-DC converter in a normal state in which the voltage detection unit does not detect a voltage lower than a predetermined value. When the voltage detection unit detects a voltage lower than the predetermined value, the control unit immediately turns off the switching element to stop the operation of the DC-DC converter.