Abstract:
A pixel array includes a plurality of visible light pixels arranged in the pixel array. Each one of the plurality of visible light pixels includes a photosensitive element arranged in a first semiconductor die to detect visible light. Each one of the plurality of visible light pixels is coupled to provide color image data to visible light readout circuitry disposed in a second semiconductor die stacked with and coupled to the first semiconductor die in a stacked chip scheme. A plurality of infrared (IR) pixels arranged in the pixel array. Each one of the plurality of IR pixels includes a single photon avalanche photodiode (SPAD) arranged in the first semiconductor die to detect IR light. Each one of the plurality of visible light pixels is coupled to provide IR image data to IR light readout circuitry disposed in the second semiconductor die.
Abstract:
A time of flight sensor includes control circuitry and a time of flight pixel array. The control circuitry is coupled to synchronously send a sync signal. The time of flight pixel array includes a plurality of time of flight pixel cells. Each one of the time of flight pixel cells includes a photosensor and a delay circuit. The photosensor is configured to generate an image signal in response to receiving photons from a light pulse reflected from an object. The delay circuit is coupled to generate a delayed sync signal in response to the sync signal. The delay circuit includes a delay transistor. The time of flight pixel array includes a transistor gradient where a transistor gate length of the delay transistor varies so that each of the time of flight pixel cells receive their respective delayed sync signal at a same time.
Abstract:
A time of flight sensor includes control circuitry and a time of flight pixel array. The control circuitry is coupled to synchronously send a sync signal. The time of flight pixel array includes a plurality of time of flight pixel cells. Each one of the time of flight pixel cells includes a photosensor and a delay circuit. The photosensor is configured to generate an image signal in response to receiving photons from a light pulse reflected from an object. The delay circuit is coupled to generate a delayed sync signal in response to the sync signal. The delay circuit includes a delay transistor. The time of flight pixel array includes a transistor gradient where a transistor gate length of the delay transistor varies so that each of the time of flight pixel cells receive their respective delayed sync signal at a same time.
Abstract:
Techniques and mechanisms to mitigate fixed pattern noise in image sensor data. In an embodiment, readout circuitry includes an adaptive analog-to-digital converter (ADC) comprising a differential amplifier and a feedback path coupled across the differential amplifier, where the ADC is to receive a ramp signal, a control signal associated with a transition rate of the ramp signal, and an analog signal generated by one or more pixels. In another embodiment, the feedback path and/or one or more other circuit elements coupled to the differential amplifier are configured, based on the control signal, to provide one of multiple loop gains with the differential amplifier. The ADC provides a digital output to determine a comparison based on the ramp signal and the analog signal.
Abstract:
An image sensor read out circuit includes a first current mirror circuit in which a second current conducted through a second current path is controlled in response to a first current conducted through the first current path. The second current is conducted through an amplifier transistor of a pixel circuit. A first current source coupled to the first current path to provide a substantially constant current component of the first current. A second current source coupled to a power supply rail of the pixel circuit and coupled to the first current path to provide a ripple current component of the first current. The ripple current component provided by the second current source is responsive to a ripple in the power supply rail. The first current is responsive to a sum of the currents from the first and second current sources.
Abstract:
A method of implementing dynamic ground sharing in an image sensor with pipeline architecture starts with a pixel array capturing image data. Pixel array includes pixels to generate pixel data signals, respectively. A readout circuitry acquires the image data from a row in the pixel array. An analog-to-digital conversion (ADC) circuitry included in the readout circuitry samples the image data from the row to obtain sampled input data. When the ADC circuitry is sampling, a ground sharing switch is closed to couple the pixel array and the ADC circuitry to a common ground. When the ADC circuitry is not sampling, the ground sharing switch is open to separate the pixel array and the ADC circuitry from the common ground. The ADC circuitry converts the sampled image data from analog to digital to obtain an ADC output. Other embodiments are described.
Abstract:
Techniques and mechanisms to mitigate fixed pattern noise in image sensor data. In an embodiment, readout circuitry includes an adaptive analog-to-digital converter (ADC) comprising a differential amplifier and a feedback path coupled across the differential amplifier, where the ADC is to receive a ramp signal, a control signal associated with a transition rate of the ramp signal, and an analog signal generated by one or more pixels. In another embodiment, the feedback path and/or one or more other circuit elements coupled to the differential amplifier are configured, based on the control signal, to provide one of multiple loop gains with the differential amplifier. The ADC provides a digital output to determine a comparison based on the ramp signal and the analog signal.
Abstract:
A pixel array includes a plurality of visible light pixels arranged in the pixel array. Each one of the plurality of visible light pixels includes a photosensitive element arranged in a first semiconductor die to detect visible light. Each one of the plurality of visible light pixels is coupled to provide color image data to visible light readout circuitry disposed in a second semiconductor die stacked with and coupled to the first semiconductor die in a stacked chip scheme. A plurality of infrared (IR) pixels arranged in the pixel array. Each one of the plurality of IR pixels includes a single photon avalanche photodiode (SPAD) arranged in the first semiconductor die to detect IR light. Each one of the plurality of visible light pixels is coupled to provide IR image data to IR light readout circuitry disposed in the second semiconductor die.
Abstract:
An image sensor read out circuit includes a first current mirror circuit in which a second current conducted through a second current path is controlled in response to a first current conducted through the first current path. The second current is conducted through an amplifier transistor of a pixel circuit. A first current source is coupled to the first current path to provide a substantially constant current component of the first current. A second current source is coupled to a power supply rail of the pixel circuit and coupled to the first current path to provide a ripple current component of the first current. The ripple current component provided by the second current source is responsive to a ripple in the power supply rail. The first current is responsive to a sum of the currents from the first and second current sources.
Abstract:
An integrated circuit chip includes CMOS integrated circuit cells arranged in a semiconductor layer, each including first and second active regions, having first and second polarities, respectively. A first power rail is routed along boundaries of the CMOS integrated circuit cells proximate to the first active regions. A second power rail is routed over second active regions. Global routing channels are routed over the second active regions such that the second power rail is disposed between the global routing channels and the first power rail. The global routing channels are coupled between the CMOS integrated circuit cells to couple the CMOS integrated circuit cells together globally in the integrated circuit chip.