Abstract:
Nodes in a distributed node system are configured to support memory corruption detection when memory is shared between the nodes. Nodes in the distributed node system share data in units of memory referred to herein as “shared cache lines.” A node associates a version value with data in a shared cache line. The version value and data may be stored in a shared cache line in the node's main memory. When the node performs a memory operation, it can use the version value to determine whether memory corruption has occurred. For example, a pointer may be associated with a version value. When the pointer is used to access memory, the version value of the pointer may indicate the expected version value at the memory location. If the version values do not match, then memory corruption has occurred.
Abstract:
Techniques for executing versioned memory access instructions. In one embodiment, a processor is configured to execute versioned store instructions of a first thread within a first mode of operation. In this embodiment, in the first mode of operation, the processor is configured to retire a versioned store instruction only after a version comparison has been performed for the versioned store instruction. In this embodiment the processor is configured to suppress retirement of instructions in the first thread that are younger than an oldest versioned store instruction until the oldest versioned store instruction has retired. In some embodiments, the processor is configured to execute versioned store instructions of a given thread within a second mode of operation, in which the processor is configured to retire outstanding versioned store instructions before a version comparison has been performed.
Abstract:
A system and method for transferring data and messages between nodes in a cluster is disclosed. Each node in the cluster is a separate physical domain but is connected to other nodes in the cluster through point-to-point high speed links. Each side of a link is coupled to a coprocessor which facilitates the movement of data between and among the nodes. Because each physical domain is separate from any other domain, the coprocessor in a physical domain uses a certificate, called and RKey, to obtain permission to transfer data to another physical domain. When an RKey is received from another physical domain, the coprocessor in the receiving domain validates the key and obtains the physical addresses associated with the key so that it can provide or accept the remote data. Data transfers between pairs of remote nodes in the cluster are permitted as well.
Abstract:
Nodes in a distributed node system are configured to support memory corruption detection when memory is shared between the nodes. Nodes in the distributed node system share data in units of memory referred to herein as “shared cache lines.” A node associates a version value with data in a shared cache line. The version value and data may be stored in a shared cache line in the node's main memory. When the node performs a memory operation, it can use the version value to determine whether memory corruption has occurred. For example, a pointer may be associated with a version value. When the pointer is used to access memory, the version value of the pointer may indicate the expected version value at the memory location. If the version values do not match, then memory corruption has occurred.
Abstract:
Systems and methods for utilizing memory version instructions and techniques in conjunction with garbage collection in a processor. A hardware-assisted garbage collection algorithm may be executed by a computing system to move live objects between memory regions. Special store instructions may be utilized to mark the live objects of each memory region that is about to be migrated. Mutators performing useful work may be configured to trap on a memory region which is marked for migration.
Abstract:
A system and method for transferring data and messages between nodes in a cluster is disclosed. Each node in the cluster is a separate physical domain but is connected to other nodes in the cluster through point-to-point high speed links. Each side of a link is coupled to a coprocessor which facilitates the movement of data between and among the nodes. Because each physical domain is separate from any other domain, the coprocessor in a physical domain uses a certificate, called and RKey, to obtain permission to transfer data to another physical domain. When an RKey is received from another physical domain, the coprocessor in the receiving domain validates the key and obtains the physical addresses associated with the key so that it can provide or accept the remote data. Data transfers between pairs of remote nodes in the cluster are permitted as well.
Abstract:
A method and apparatus are disclosed for enabling nodes in a distributed system to share one or more memory portions. A home node makes a portion of its main memory available for sharing, and one or more sharer nodes mirrors that shared portion of the home node's main memory in its own main memory. To maintain memory coherency, a memory coherence protocol is implemented. Under this protocol, load and store instructions that target the mirrored memory portion of a sharer node are trapped, and store instructions that target the shared memory portion of a home node are trapped. With this protocol, valid data is obtained from the home node and updates are propagated to the home node. Thus, no “dirty” data is transferred between sharer nodes. As a result, the failure of one node will not cause the failure of another node or the failure of the entire system.
Abstract:
Techniques for executing versioned memory access instructions. In one embodiment, a processor is configured to execute versioned store instructions of a first thread within a first mode of operation. In this embodiment, in the first mode of operation, the processor is configured to retire a versioned store instruction only after a version comparison has been performed for the versioned store instruction. In this embodiment the processor is configured to suppress retirement of instructions in the first thread that are younger than an oldest versioned store instruction until the oldest versioned store instruction has retired. In some embodiments, the processor is configured to execute versioned store instructions of a given thread within a second mode of operation, in which the processor is configured to retire outstanding versioned store instructions before a version comparison has been performed.
Abstract:
Techniques for handling version information using a copy engine. In one embodiment, an apparatus comprises a copy engine configured to perform one or more operations associated with a block memory operation in response to a command. Examples of block memory operations may include copy, clear, move, and/or compress operations. In one embodiment, the copy engine is configured to handle version information associated with the block memory operation based on the command. The one or more operations may include operating on data in a cache and/or modifying entries in a memory. In one embodiment, the copy engine is configured to compare version information in the command with stored version information. The copy engine may overwrite or preserve version information based on the command. The copy engine may be a coprocessing element. The copy engine may be configured to maintain coherency with other copy engines and/or processing elements.
Abstract:
Techniques for handling version information using a copy engine. In one embodiment, an apparatus comprises a copy engine configured to perform one or more operations associated with a block memory operation in response to a command. Examples of block memory operations may include copy, clear, move, and/or compress operations. In one embodiment, the copy engine is configured to handle version information associated with the block memory operation based on the command. The one or more operations may include operating on data in a cache and/or modifying entries in a memory. In one embodiment, the copy engine is configured to compare version information in the command with stored version information. The copy engine may overwrite or preserve version information based on the command. The copy engine may be a coprocessing element. The copy engine may be configured to maintain coherency with other copy engines and/or processing elements.