摘要:
A low-GIDL current MOSFET device structure and a method of fabrication thereof which provides a low-GIDL current. The MOSFET device structure contains a central gate conductor whose edges may slightly overlap the source/drain diffusions, and left and right side wing gate conductors which are separated from the central gate conductor by a thin insulating and diffusion barrier layer.
摘要:
A MOSFET fabrication methodology and device structure, exhibiting improved gate activation characteristics. The gate doping that may be introduced while the source drain regions are protected by a damascene mandrel to allow for a very high doping in the gate conductors, without excessively forming deep source/drain diffusions. The high gate conductor doping minimizes the effects of electrical depletion of carriers in the gate conductor. The MOSFET fabrication methodology and device structure further results in a device having a lower gate conductor width less than the minimum lithographic minimum image, and a wider upper gate conductor portion width which may be greater than the minimum lithographic image. Since the effective channel length of the MOSFET is defined by the length of the lower gate portion, and the line resistance is determined by the width of the upper gate portion, both short channel performance and low gate resistance are satisfied simultaneously.
摘要:
A low-GIDL current MOSFET device structure and a method of fabrication thereof which provides a low-GIDL current. The MOSFET device structure contains a central gate conductor whose edges may slightly overlap the source/drain diffusions, and left and right side wing gate conductors which are separated from the central gate conductor by a thin insulating and diffusion barrier layer.
摘要:
A method of fabricating a semiconductor transistor device comprises the steps as follows. Provide a semiconductor substrate with a gate dielectric layer thereover and a lower gate electrode structure formed over the gate dielectric layer with the lower gate electrode structure having a lower gate top. Form a planarizing layer over the gate dielectric layer leaving the gate top of the lower gate electrode structure exposed. Form an upper gate structure over the lower gate electrode structure to form a T-shaped gate electrode with an exposed lower surface of the upper gate surface and exposed vertical sidewalls of the gate electrode. Remove the planarizing layer. Form source/drain extensions in the substrate protected from the short channel effect. Form sidewall spacers adjacent to the exposed lower surface of the upper gate and the exposed vertical sidewalls of the T-shaped gate electrode. Form source/drain regions in the substrate. Form silicide layers on top of the T-shaped gate electrode and above the source/drain regions.
摘要:
A method for fabricating a semiconductor structure. The novel transistor structure comprises first and second source/drain (S/D) regions whose top surfaces are lower than a top surface of the channel region of the transistor structure. A semiconductor layer and a gate stack on the semiconductor layer are provided. The semiconductor layer includes (i) a channel region directly beneath the gate stack, and (ii) first and second semiconductor regions essentially not covered by the gate stack, and wherein the channel region is disposed between the first and second semiconductor regions. The first and second semiconductor regions are removed. Regions directly beneath the removed first and second semiconductor regions are removed so as to form first and second source/drain regions, respectively, such that top surfaces of the first and second source/drain regions are below a top surface of the channel region.
摘要:
A method for fabricating a semiconductor structure. The novel transistor structure comprises first and second source/drain (S/D) regions whose top surfaces are lower than a top surface of the channel region of the transistor structure. A semiconductor layer and a gate stack on the semiconductor layer are provided. The semiconductor layer includes (i) a channel region directly beneath the gate stack, and (ii) first and second semiconductor regions essentially not covered by the gate stack, and wherein the channel region is disposed between the first and second semiconductor regions. The first and second semiconductor regions are removed. Regions directly beneath the removed first and second semiconductor regions are removed so as to form first and second source/drain regions, respectively, such that top surfaces of the first and second source/drain regions are below a top surface of the channel region.
摘要:
In producing complementary sets of metal-oxide-semiconductor (CMOS) field effect transistors, including nFET and pFET), carrier mobility is enhanced or otherwise regulated through the reacting the material of the gate electrode with a metal to produce a stressed alloy (preferably CoSi2, NiSi, or PdSi) within a transistor gate. In the case of both the nFET and pFET, the inherent stress of the respective alloy results in an opposite stress on the channel of respective transistor. By maintaining opposite stresses in the nFET and pFET alloys or silicides, both types of transistors on a single chip or substrate can achieve an enhanced carrier mobility, thereby improving the performance of CMOS devices and integrated circuits.
摘要:
A method of forming a substantially uniform oxide film over surfaces with different level of doping and/or different dopant type is disclosed. In one aspect, a method for forming a uniform oxide spacer on the sidewalls of heavily doped n- and p-type gates is disclosed. The method includes providing a semiconductor substrate having at least two regions with dissimilar dopant characteristics, optionally heating the substrate; and forming a uniform oxide layer over the at least two regions by exposing the substrate to a gaseous mixture including atomic oxygen.
摘要:
A substrate under tension and/or compression improves performance of devices fabricated therein. Tension and/or compression can be imposed on a substrate through selection of appropriate gate sidewall spacer material disposed above a device channel region wherein the spacers are formed adjacent both the gate and the substrate and impose forces on adjacent substrate areas. Another embodiment comprises compressive stresses imposed in the plane of the channel using SOI sidewall spacers made of polysilicon that is expanded by oxidation. The substrate areas under compression or tension exhibit charge mobility characteristics different from those of a non-stressed substrate. By controllably varying these stresses within NFET and PFET devices formed on a substrate, improvements in IC performance have been demonstrated.
摘要:
A substrate under tension and/or compression improves performance of devices fabricated therein. Tension and/or compression can be imposed on a substrate through selection of appropriate STI fill material. The STI regions are formed in the substrate layer and impose forces on adjacent substrate areas. The substrate areas under compression or tension exhibit charge mobility characteristics different from those of a non-stressed substrate. By controllably varying these stresses within NFET and PFET devices formed on a substrate, improvements in IC performance are achieved.