摘要:
A method and system for multi-scale anatomical and functional modeling of coronary circulation is disclosed. A patient-specific anatomical model of coronary arteries and the heart is generated from medical image data of a patient. A multi-scale functional model of coronary circulation is generated based on the patient-specific anatomical model. Blood flow is simulated in at least one stenosis region of at least one coronary artery using the multi-scale function model of coronary circulation. Hemodynamic quantities, such as fractional flow reserve (FFR), are computed to determine a functional assessment of the stenosis, and virtual intervention simulations are performed using the multi-scale function model of coronary circulation for decision support and intervention planning.
摘要:
A method and system for multi-scale anatomical and functional modeling of coronary circulation is disclosed. A patient-specific anatomical model of coronary arteries and the heart is generated from medical image data of a patient. A multi-scale functional model of coronary circulation is generated based on the patient-specific anatomical model. Blood flow is simulated in at least one stenosis region of at least one coronary artery using the multi-scale function model of coronary circulation. Hemodynamic quantities, such as fractional flow reserve (FFR), are computed to determine a functional assessment of the stenosis, and virtual intervention simulations are performed using the multi-scale function model of coronary circulation for decision support and intervention planning.
摘要:
Methods for computing hemodynamic quantities include: (a) acquiring angiography data from a patient; (b) calculating a flow and/or calculating a change in pressure in a blood vessel of the patient based on the angiography data; and (c) computing the hemodynamic quantity based on the flow and/or the change in pressure. Systems for computing hemodynamic quantities and computer readable storage media are described.
摘要:
A method and system for non-invasive assessment of coronary artery stenosis is disclosed. Patient-specific anatomical measurements of the coronary arteries are extracted from medical image data of a patient acquired during rest state. Patient-specific rest state boundary conditions of a model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Patient-specific rest state boundary conditions of the model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Hyperemic blood flow and pressure across at least one stenosis region of the coronary arteries are simulated using the model of coronary circulation and the patient-specific hyperemic boundary conditions. Fractional flow reserve (FFR) is calculated for the at least one stenosis region based on the simulated hyperemic blood flow and pressure.
摘要:
A method and system for non-invasive assessment of coronary artery stenosis is disclosed. Patient-specific anatomical measurements of the coronary arteries are extracted from medical image data of a patient acquired during rest state. Patient-specific rest state boundary conditions of a model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Patient-specific rest state boundary conditions of the model of coronary circulation representing the coronary arteries are calculated based on the patient-specific anatomical measurements and non-invasive clinical measurements of the patient at rest. Hyperemic blood flow and pressure across at least one stenosis region of the coronary arteries are simulated using the model of coronary circulation and the patient-specific hyperemic boundary conditions. Fractional flow reserve (FFR) is calculated for the at least one stenosis region based on the simulated hyperemic blood flow and pressure.
摘要:
A method and system for non-invasive hemodynamic assessment of aortic coarctation from medical image data, such as magnetic resonance imaging (MRI) data is disclosed. Patient-specific lumen anatomy of the aorta and supra-aortic arteries is estimated from medical image data of a patient, such as contrast enhanced MRI. Patient-specific aortic blood flow rates are estimated from the medical image data of the patient, such as velocity encoded phase-contrasted MRI cine images. Patient-specific inlet and outlet boundary conditions for a computational model of aortic blood flow are calculated based on the patient-specific lumen anatomy, the patient-specific aortic blood flow rates, and non-invasive clinical measurements of the patient. Aortic blood flow and pressure are computed over the patient-specific lumen anatomy using the computational model of aortic blood flow and the patient-specific inlet and outlet boundary conditions.
摘要:
A method and system for non-invasive hemodynamic assessment of aortic coarctation from medical image data, such as magnetic resonance imaging (MRI) data is disclosed. Patient-specific lumen anatomy of the aorta and supra-aortic arteries is estimated from medical image data of a patient, such as contrast enhanced MRI. Patient-specific aortic blood flow rates are estimated from the medical image data of the patient, such as velocity encoded phase-contrasted MRI cine images. Patient-specific inlet and outlet boundary conditions for a computational model of aortic blood flow are calculated based on the patient-specific lumen anatomy, the patient-specific aortic blood flow rates, and non-invasive clinical measurements of the patient. Aortic blood flow and pressure are computed over the patient-specific lumen anatomy using the computational model of aortic blood flow and the patient-specific inlet and outlet boundary conditions.
摘要:
A method for modeling a blood vessel includes: (a) modeling a first segment of the blood vessel based on medical imaging data acquired from a subject; (b) computing a first modeling parameter at an interior point of the first segment; and (c) computing a second modeling parameter at a boundary point of the first segment using a viscoelastic wall model. Systems for modeling a blood vessel are described
摘要:
A method for modeling a blood vessel includes: (a) modeling a first segment of the blood vessel based on medical imaging data acquired from a subject; (b) computing a first modeling parameter at an interior point of the first segment; and (c) computing a second modeling parameter at a boundary point of the first segment using a viscoelastic wall model. Systems for modeling a blood vessel are described.
摘要:
An estimation of arterial wall properties is provided. A method for determining a wall property of an artery such as an aorta includes acquiring patient data and extracting physical data from the patient data. The physical data is applied to a blood flow model of the aorta to obtain an individual blood flow model. The wall property of the artery is directly or indirectly determined from the individual blood flow model.