Abstract:
Methods, systems, and devices for wireless communications are described. The described techniques provide for detecting when a control link between a user equipment (UE) and a base station is lost and recovering the control link. In one example, a UE may detect that a control link with a base station is lost based on a timer or counter expiring or based on failing to receive signaling from the base station. In another example, a UE may be configured to transmit uplink transmissions to a base station to maintain a control link with the base station, and the base station may detect that a control link with the UE is lost if the base station fails to receive one or more uplink transmissions from the UE. If the control link is lost, the base station and the UE may communicate to re-establish the control link.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive data from both a source base station and a target base station during handover. For example, the UE may refrain from resetting or reestablishing media access control (MAC) and packet data convergence protocol (PDCP) layer configurations until after a successful access procedure is performed with the target base station. In some cases, a single radio link control (RLC)/PDCP stack may be used during handover procedures. A source base station may, for example, forward data to a target base station after receiving a handover execution message. A UE may identify and resolve any duplicate data sent by both base stations during the transition. Additional signaling may be used (e.g., during the radio resource control (RRC) configuration) to indicate that a UE supports dual link handover.
Abstract:
A user equipment (UE) may transmit a UE-generated uplink message to a base station to request resources for an uplink transmission. The UE may be configured to send the message (e.g., a scheduling request (SR)) using different transmission modes. For example, the UE may transmit the SR using a scheduled mode where the UE conveys the SR along with another uplink message (e.g., a control message). In some examples, the UE may transmit the SR using an autonomous mode where the UE transmits the SR in resources reserved for SR transmissions. The UE may determine which transmission mode to use based on certain characteristics of the SR or the data associated with the SR.
Abstract:
A device may support communication without a radio link control (RLC) layer, which may include receiving a packet data convergence protocol (PDCP) service data units (SDUs) for multiple radio bearers at a PDCP layer. The multiple radio bearers may have different reliability or delay targets, and a reordering procedure at the PDCP layer may be conducted on the different radio bearers. The reordering procedure may be a same reordering procedure for each of the radio bearers, with one or more parameters that may be adjusted based on one or both of the reliability target or delay target of the radio bearer.
Abstract:
Neutral host networks may offer one or more different services via one or more different service providers, but user equipment (UE) may not necessarily know which services/service providers are offered by the neutral host networks. Accordingly, nodes of the neutral host networks (e.g., an access point, such as an evolved Node B (eNB)) may transmit service discovery information (SDI) to advertise the one or more services or service providers offered by the node and/or the neutral host network. Thus, a UE can receive the SDI via broadcast by the node, dedicated message from the node, etc., and can accordingly present at least a portion of the SDI or determine whether to connect to the node or another node of the neutral host network based at least in part on the SDI.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may receive data from both a source base station and a target base station during handover. For example, the UE may refrain from resetting or reestablishing media access control (MAC) and packet data convergence protocol (PDCP) layer configurations until after a successful access procedure is performed with the target base station. In some cases, a single radio link control (RLC)/PDCP stack may be used during handover procedures. A source base station may, for example, forward data to a target base station after receiving a handover execution message. A UE may identify and resolve any duplicate data sent by both base stations during the transition. Additional signaling may be used (e.g., during the radio resource control (RRC) configuration) to indicate that a UE supports dual link handover.
Abstract:
A user equipment (UE) may operate in a reception mode that includes a set of sleep cycles and a set of wake cycles. During a sleep cycle of the UE, a signal quality of an active beam carrying a control channel or a data channel may degrade. This may result in the UE failing to decode the control channel or the data channel during a subsequent wake cycle. In some aspects, the UE may perform a measurement of one or more beams, of a set of beams, prior to the wake cycle. In some aspects, the UE may identify a beam, of the one or more beams, to use for communication with a base station (BS). In this way, the UE reduces a delay in data transfer associated with performing beam recovery after failing to decode the control channel or data channel during the wake cycle.
Abstract:
A user equipment (UE) may operate in a reception mode that includes a set of sleep cycles and a set of wake cycles. During a sleep cycle of the UE, a signal quality of an active beam carrying a control channel or a data channel may degrade. This may result in the UE failing to decode the control channel or the data channel during a subsequent wake cycle. In some aspects, the UE may perform a measurement of one or more beams, of a set of beams, prior to the wake cycle. In some aspects, the UE may identify a beam, of the one or more beams, to use for communication with a base station (BS). In this way, the UE reduces a delay in data transfer associated with performing beam recovery after failing to decode the control channel or data channel during the wake cycle.
Abstract:
Aspects described herein relate to receiving communications in contention-based radio access technologies (RAT). Communication resources can be activated for monitoring one or more channels related to a contention-based RAT based at least in part on a discontinuous receive (DRX) cycle. The one or more channels related to the contention-based RAT can be monitored in one or more time periods following activating the communication resources to determine whether communications are received from an access network node. An on-duration timer during which the communication resources remain active to receive the communications in the contention-based RAT can be initialized based at least in part on determining that the communications are received from the access network node. The communication resources can be deactivated following expiration of the on-duration timer.
Abstract:
A method, a computer program product, and an apparatus are provided. The apparatus may be a UE. The UE receives an information block from a first base station while camped on a second base station. In an aspect, the information block includes an indication of a random access configuration for performing at least a part of a random access procedure. The UE determines to reselect to the first base station from the second base station. The UE performs at least a part of a random access procedure with the first base station based on the indicated random access configuration to reselect from a second base station to the first base station.